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ABSTRACT

This is an Interim Report discussing the develop-
ment of a theory for describing the response of solid
bodies to high intensity impulsive loads, including the ef-
fect of material strength.

Inclusion of material strength requires a full
thermodynamic treatment, which has not been satisfactorily
formulated. An approximation is considered in which entropy
production due to plastic flow is neglected. In the result-
ant theory, stresses are related to elastic strains through
an isentropic strain energy potential, and the elastic
strains are limited by a yield condition. Results of an
analysis of dynamic compressibility data for copper to 2.7
Mbar by second order elasticity theory are very encouraging.
Analysis of experimental plane wave propagation data for
aluminum with a variety of yield functions indicates that
presently measurable quantities do not provide a sensitive
means of determining the yield function. Other configura-
tions may be more suitable, but require development of two-

dimensional solution methods.
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on values 1, 2, 3, respectively. Repetition of indices in
a term implies summation. The comma denotes partial differen-
tiation with respect to the space variables, while the dot is

used to denote the material derivative.

Greek subscripts or superscripts are not tensorial
indices and take on values 1, 2, - - « M where M is not neces-
sarily 3. However, the summation rule will be also applied
to Greek indices. Since Greek indices do not denote tensorial
character, they will be written as subscripts or superscripts

according to comnvenience.

For a given set of tensor components A i
we will occasionally write A, which may be read as ”boldface
A." Similarly we will use B to denote the set B*

The usual symbols for a symmetric A(ij) and an

antisymmetric A[ij] tensor will be used.
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1. INTRODUCTION

A number of engineering pfoblems involving very
high velocity impact, or other very rapid modes of deposi-
tion of large amounts of energy in a structure have recently

become important.

The first approach to such problems has involved
the so-called "hydrodynamic'" assumption. It is assumed that-
the shear stress which the material is able to support is al-
ways negligible in comparison with the compressive stress,
and the material is treated as if it were a fluid. A suitable
"equation of state' is used, which is deduced from plate im-
pact experiments via the Mie-Gruneisen theory,l and at higher
pressures is deduced from the Fermi-Thomas-Dirac theory.
While the "hydrodynamic' theory has been found to give rea-
sonably good results for many problems, it is not able to ac-
count for important effects which are traceable to the influ-
ence of material strength.

It is therefore necessary to inquire if material
strength can be included in the theory. The kinematical
equations of continuity and motion, expressing the principles
of conservation of mass and momentum, are well known. To
these must be joined constitutive relations expressing the
reaction of the material. Two important problems arise.

The first problem centers on the question whether
solutions can be found for this set of nonlinear differential
equations for specific initial and boundary conditions. The

question must await formulation of specific constitutive re-



lations, but the possibility of obtaining analytical solutions
to nontrivial problems seems remote. There remains the pos-
sibility of numerical integration, already widely used for
"hydrodynamic'" calculations. Such a method of solution neces-
sarily cannot provide fine detail due to limitations on com-
puter storage and running time and accumulation of truncation
and round-off errors. Again, the question whether sufficient
detail can be reproduced so that the solution is an improve-

1A

ment over a "hydrodynamic' solution cannot be fully assessed

at this time.

The second problem centers on the specification of
the constitutive relations. Constitutive relations have been
formulated for certain ideal materials; e.g.,viscous fluid,
linear elastic solid, perfect plastic solid, etc. It is not
immediately evident how the constitutive relations are to be
formulated for the present case. Only for specially simple
ideal materials do the constitutive relations involve the
kinematical variables, stress and strain, alone. It is neces-
sary, in genevral, to consider alsc thermodynamic variables and
the interaction between thermodynamic and kinematic changes.

A satisfactory general thermodynamic treatment for a solid has

so far not been given.

The problem therefore is not so much one of measure-
ment of material properties for insertion in the constitutive
relations. It is first necessary to achieve a satisfactory
formulation of the constitutive relations and to specify
which physical properties are relevant. There is a funda-
mental aspect of the theory of continua which renders this
difficult. The constitutive relations must describe the be-
havior of a volume element of the material. This behavior
cannot be deduced from gross measurements on a body of the
material without recourse to the theory itself.



Thus, in order to deduce stress-strain relations from
measurements of elongations produced by surface tractions ap-
plied to a body of the material under study, it is necessary to
analyze the deformation field correctly. For a tensile speci-
men, the deformation field may be assumed to be particularly
simple for small elongations, so that the stress-strain rela-
tion can be deduced directly from the tensile force-elongation
data. As soon as the specimen necks, this can no longer be
done. When a tension test is conducted at high rates, it would,
ir addition, be necessary to consider thermodynamic changes ex-
plicitly. Failure to analyze the experiments correctly prob-
ably accounts for apparent contradictions in the dynamic "materi-

al properties" reported by various experimenters.

The present paper is an interim report on an investi-
gation of the possivility of correcting the "hydrodynamic"
theory to include the gross observable effects of material
strength. Some pertinent thermodynamic relations are re-
viewed. In view of the fact that the thermodynamic treatment
has not been completed, some interim approximations are sug-
gested which depend on the working hypothesis that the yield
stress is not greatly increased above its static value, and
which permit uncoupling of kinematic and thermodynamic con-
siderations, leading to a fairly simple formulation of the
constitutive relation. A beginning is then made in the con-
sideration of two aspects of the resultant theory; viz.,the
relation between stress and the recoverable (elastic) part
of the strain, and the yield condition which in effect limits

the recoverable part of the strain.



2. SUMMARY

2.1 Kinematical Relations

The Eulerian equations of continuity and motion are

well known

f>+p(1.j=u (3.2)%
) (3.3)

To these must be joined constitutive equations

in the general form

f(r.. ,

g ) =0 (3.4)

Ui,j
expressing the behavior of the material, before proceeding
to solutions of problems with suitable initial and boundary
conditions. The possibility of finding closed form solu-
tions to these equations, which contain both geometrical and
physical nonlinearities is remote. For special cases, the
method of characteristics may prove useful, but a general
discussion cannot be given until a specific constitutive re-

lation is inserted.

There is a possibility that numerical integration
of the equations in finite difference form may provide solu-
tions sufficient for engineering purposes for some problems.
The principal difficulty in the construction of finite dif-

ference analogs to Eqs. 3.2, 3.3 and 3.4 is the representa-

tion of stress and deformation gradients. Schemes in which

T

"Equation numbers in this section are the same as those in
the main body of the text. For definition of symbols see main
text. For notation, see notec at end of the List of Symbols.



averages over nearest neighbors are used, which are employed
in Eulerian fluid flow problems, could probably be extended
to the present case. Alternatively, the Lagrangian equa-
tions, in which the difficulty does not arise, could be used
for motions involving moderate distortions. A finite dif-
ference code could be programmed, in which the constitutive
relation appears as a subprogram, resulting in considerable
flexibility. The constitutive relation could then be easily
altered without disturbing the control program or calcula-
tions involving the equations of continuity and motion.

2.2 Constitutive Relation

A discussion of the constitutive relation neces-
sarily requires consideration of thermodynamic relationships.
Only in very special circumstances can the state of the materi-
al be described in terms of kinematical variables alone. The
main thermodynamical results are reviewed. In particular, the
principle of conservation of energy leads to the relation that
the increase in internal energy is due to the external stress
power,PE and the external heat addition QE’

¢ = {
pe PE+ QE (}2)

Definition of entropy leads to an equation for en-
tropy production, which is found to be due to the difference
between the external stress power and the internal stress
power PI, i.e.,to the dissipative stress power, and to the
external heat addition

PTs = P, — Py + Qp (4.13)

The completé set of equations to be considered are
then the equation of continuity and motion, Eqs. 3.2, 3.3,



the energy and entropy equations Eq. 4.2, 4.13 together with

a caloric equation of state governing material behavior

e =¢e(s, V). - (4.5)

where Vv determine the mechanical substate, and phenomeno-
logical relations governing dissipative and heat-flow

mechanisms.

Under special circumstances, such as when the
motion is entirely adiabatic or isothermal, some or all of
the thermodynamic quantities can be eliminated from explicit
consideration, and the material can be adequately described
by a simple stress-strain relation. For this reason, we
prefer to include the thermodynamic relations as part of the
constitutive relations.

One assumption which leads to such simplification
is the 'hydrodynamic'' assumption, i.e., the yield stress is
always small compared to the pressure. With the further
assumption that spherical stress work is nondissipative and
spherical strain is entirely recoverable, this leads to the
result that the dissipative work done is negligible com-
pared to the spherical stress work. For an adiabatic motion
Qg = 0), we see from Eq. 4.13 that s = O while Eq. 4.2 be-

comes simply
PE = p /P (4.36)

i.e.,the energy equation for an ideal fluid. Entropy changes
at possible shock waves may be handled by the Rankine-
Hugoniot relations, or by the introduction of the usual type
of artificial viscosity smoothing function which is so formu-
lated that its effect is negligible everywhere except in
areas of very high gradient, such as in shock zones.



As soon as the yield stress cannot be assumed
small in some regions of the motion, the "hydrodynamic' as-
sumption is violated, and it is necessary to consider a fulll
thermodynamic treatment of the motion. However, a fully
satisfactory thermodynamic treatment has so far not been
given. An interim formulation, in which the entropy pro-
duction due to dissipative plastic flow is still neglected
may be considered until a thermodynamic treatment becomes
available. While this may provide some coxrrection to the
"hydrodynamic' theory, the basic assumption (s = 0) is vi-
olated most seriously in just those areas where the effect
of material strength is likely to be greatest, i.e.,areas
where a large amount of plastic flow occurs at low pressure.
The energy equation is modified simply to

PE = Ty u’i;)j (4.39)
where g? is the elastic part of the deformation, which is
limitea, in effect, by a yield condition.

2.3 Elastic Behavior

We turn now to preliminary considerations of the
elastic stress-strain relationship Eq. 4.39, and of the
yield condition.

Following usual practice, the strain energy po-
tential P& = ¥(g), where the strain ¢ is defined by

e, . = % (u1 + u - u. (5.1)

kj <, ] ik i,] Ui,k>

is expanded as a power series in the strain invariant I,, Io,
Is

2 3
¥ = al; + bI, + cls + £I; + mIyIz + nlyg + - - - (5.2)



So that the theory agrees with the classical
theory for infinitesimal strains, we set a = 0, b = 1/2 x
(M + 2u), ¢ =~ 2u where A and u are the adiabatic Lamé
constants. '

The stress-strain relation is then obtained from

oY

Ty T Qg 26h) (B?Rj (5.3)

s

To complete the description, the material con-
stants A, p, £, m and n must be evaluated for a particular
value of entropy. A parallel development exists for iso-
thermal conditions, when the strain energy potential 1is
equal to the free energy Py = ¥(¢). The constants A, W, £,

m and n will then refer to a particular value of temperature.

The first-order coefficients, the adiabatic Lamé
constants, are best determined by ultrasonic pulse-echo
techniques. Such experiments can also be performed under
hydrostatic pressure, although the attainable pressures are
limited to about 10 kb by present techniques, from which
pressure derjvatives of the elastic moduli can be determined.
For an isotropic material under hydrostatic pressure, only
two distinct wave velocities can be measured, the longitudinal

wave velocity, corresponding to /(K + 4G/3),/p and the trans-
verse wave velocity corresponding to «~/G/P, where K is the
Bulk Modulus, and G is the Shear Modulus.

By considering a state of strain consisting of a
(large) spherical strain e, and an infinitesimal perturba-
tion e
S (5.9)

it is possible to evaluate the effect of strain on the

9



Bulk Modulus and Shear Modulus

1 5/2
G = 7(1 — 2e) 20 — (6N + 8y — 3m + n)
- (5.14)

— e2(544 + 12m)J&

l 5/2
K = 5(1 — 2) {(Jx + 2 ) — (21N + ldp — 544

(5.15)

— 18m — 2n) — 22(2438 + &1lm + 9n)Jr

Thus, measurements of pressure derivatives of the
elastic moduli should provide two independent relations for
the three second-order constants £, m, and n; but this is not
sufficient to determine these constants separately, and a

further independent measurement must be sought.

Information relevant to the second-order elastic
constants may also be deduced from adiabatic compressibility

data under spherical stress. For a purely spherical stress,

we find
7/3 5/3.
_1 e _ e 1
P=73 LB ) 50 } {3% + 2u) + 2(2717, + 9m + n)

(5.8)
2/3

f

Adiabatic and isothermal compressibility data may

— —%—(27}3 + 9m + n)

P
Po

be deduced from hydrostatic compression experiments at pres-
sures up to luU kb, and from dynamic Hugoniot measurements
from plate impact experiments up to 4 Mb, via the Mie-

Gruneisen theory. 1If sufficient terms are included in the

10



expansion, Eq. 5.2, then from Eq. 5.8 we see that a plot of

P Vs (9/90)2/3

ATy A

(P/Po
should be a straight line. This is in fact found to be so
for copper (figures 5.1, 5.2), the only material for which

the comparison has so far been made.

Furthermore, the straight-line fit yields a value
of (274 + 9m + n). For the zero temperature isotherm, this
is found to be — 5880 kb, for the isentrope through P = O,

T = 293°K, we find a value — 5840 kb, while for the isentrope
through 500 kb on the hugoniot we find a value — 4460 kb.

The experiment of Altshuler35 gives additional in-
formation. In this experiment, the speed of a relaxation
wave propagating into shock compressed material is determined.
The "overtaking-relaxation method'" yielded the speed of the
bulk wave which was found to correspond closely to ~/K/P de-
termined from adiabatic compressibility data estimated from
slopes of measured shock Hugoniots. However, the ''lateral
relaxation method" led to velocities which were higher than
the bulk wave velocity and corresponded to the longitudinal
wave velocity. The measured velocity of a longitudinal re-
lease wave moving into copper shock compressed to 407 kb
was found to be 6.33 Km/sec, yielding(K + 4G/3) = 4290 kb.
Rough interpolation of the bulk modulus for these conditions
gives K = 3160 kb, so that we have, very approximately,

G = 850 kb, which is nearly twice the value at zero pressure.

A comparison with the information deduced from
pressure derivatives of the elastic moduli measured by pulse-
echo techniques should be possible, but this calculation has

not yet been performed.

11



2.4 Yield Behavior

We turn now to investigate certain aspects of the
yield condition relevant to the present problem. There is
a large number of effects which may alter the yield condi-
tion. Among these one might mention temperature, strain-
rate, strain hardening, and, under extreme conditions, the
yield stress may also conceivably depend on the pressure.
It would probably be undesirable, cvén if it were possible,
to incorporate a physically realistic yield dependence on all
of the relevant factors. Rather, we seek a rough description
which will be adequate for engineering calculations and
which will reflect only the most important gross effects.

It is not yet clear which effects are the most im-
portant under conditions of high pressure and strain rate,
and many contradictory statements appear in the literature
with regard to the magnitude of one or the other of the

above-mentioned effects.

We therefore choose the simplest possible heuristic
approach to investigate the effects of various types of postu-
lated bechavior on observable response and seek to compare the

predicted response with experimental observations.

The yield behavior is best observed at low pressure
and it is sufficient initially to limit the discussion to in-
finitesimal strain. A generalization of the Malvern theory36
gives the stress-strain relation

. T,
= : — 339 - Ty =Ll
rij 2G eij + (K 2G/.5))ij €1k 2G g(t ) = (6.11)

Here g(T ) is a strain-rate function, where T , the

von Mises ecffective overstress, is defined by T =T — o, and

T ?/%'%ﬁl "'Tz)z + (12 — Ta)z + (13 — Tz)zj (6.7)

12



Correspondingly, o is formed from the stress g
which satisfies the yield condition.

We therefore need to evaluate the yield stress g
and the relaxation function g in order to complete the
description of the material.

It is difficult to decide on the functional form
of the relaxation function g. The best that can be done at
present is to choose a simple functional form for g which is
consistent with current theories of the pﬁysical processes
taking place and then to use experimental results to put
bounds on the values of the coefficients. With the tenuous
justification that plastic flow is due to propagation of
dislocations and is a thermally activated process, the re-

laxation function is given a form

(7)) = aT &7 (6.31)

where a and b are to be found empirically.

The yield condition is also difficult to evaluate.
It is quite likely that the yield condition may differ from
that applicable to "static' conditions. In the time taken
for static tests there may be, for example, ageing and self-
annealing mechanisms active which are inoperative in the time
available under dynamic conditions. Bell and WernerLil have
found, for example, that the stress~strain curve deduced from
a rate-independent analysis of wave propagation in rods
differs fror the stress-strain curve obtained in a static
tensile test.

The information on yield stress applicable to
"static' conditions cannot be taken over directly for dynamic
problems; it is again necessary to assume a yield behavior

and to evaluate the constants empirically.

13



Some simple descriptions of yield and relaxation
behavior are investigated for uniaxial strain configurations.
Four different types of behavior are considered: (1) rate in-
dependent with constant yield, (2) rate independent with pres-
sure dependent yield, (3) rate independent with strain harden-
ing, and (4) constant yield with strain-rate behavior. The
results indicate that it is not possible to distinguish be-
havior from measurable quantities; rear surface motion and
stress or interface stress, for the assumed range in variables
and uniaxial strain conditions. It is desirable to extend the
investigation to higher pressures and to other configurations,
but methods of solution for such cases must be developed be-

fore the experimental results could be interpreted.

2.5 Conclusion

It is necessary that each of the approaches con-
sidered here be pursued further. In particular it is ur-
gently necessary to pursue the thermodynamic treatment of

the material, since the proposed approximations are suspect.

The agreement obtained between compressibility
data and second-order elasticity theory is encouraging, and
indicates that further investigation is warranted. The
elastic description has not been completed. In particular
another independent measurement of the second-order elastic
constants must be sought.

Description of the yield behavior is far from
complete. It appears that the simple rate-independent elas-
tic-plastic theory is in accord with what little experimental
evidence exists for uniaxial strain configurations at low
stresses, but there is reason to believe that this will not
be so for other configurations. Since solutions are ob-
tainable only for uniaxial strain at the present time, further
progress must awalt development of solution methods for more

complex configurations.
14



3. KINEMATICAL RELATIONS

3.1 Equations of Motion

We consider a body initially in a state Bo. The co-
ordinates of a particle P referred to a Cartesian common frame
are denoted by a;. At time t, the body is in a distorted
state B, and the coordinates of the particle P referred te the
common frame are now Xs5 related to the a; by the reversible -
transformation law governing the motion.

X; = X;(a, t) a; = a;(x, t) (3.1)

For our present purposes it is not necessary to con-
sider general curvilinear coordinate systems, and to pursue the
argument in fully invariant form.

The displacement of the point P is given by u. =

folty

.

X; = oa;- The velocity of the point P is given by ii = u;
We limit the discussion to a nonpolar, isotropic,

homogeneous medium.

Taking the Eulerian viewpoint, by observing a
volume element with sides dxi with particles flowing through
it, and taking a; as a function of Xy Eq. 3.1z, the equation
of continuity expressing the principle of conservation of
mass i?

p+pP U, . =0 (3.2)

2

while the equation of motion, expressing the principle of

conservation of momentum becomes

T,. . = P(ui - F.

13,3 i) (3.3)

15



where 7 is the symmetric Eulerian stress tensor, P the den-

T

sity, anc I’ the specific body force.

Alternatively, the Lagrangian viewpoint may be
taken, by observing a volume element with sides dai contain-
ing a fixed collection of particles, and taking x; as a func-
tion of a;. Eq. 3.11. However, it is then necessary to refer
both body force and stress tensor to the original state of
the body By,. The Lagrangian force and stress tensors thus
lose direct physical meaning. Moreover, the Lagrangian
stress tensor is not symmetrical. This can be remedied by
using the Piola-Kirchoff stress tensor, at the cost of in-
creasing the complexity of the equation of motion. For pres-
ent purposes the Lagrangian viewpoint is not helpful, and
will not be pursued here.

The equations, Eq. 3.2, 3.3, cannot be integrated
until constitutive equations are supplied, which describe
the reaction of the material to the deformation. These re-
late the stress and deformation tensors, and take the gen-
eral form

f(r .. ) =0 (3.4)

La, UL .
1] 1,]

and will be considered in detail in Section 4.

3.2 Characteristics Method of Solution

In certain specially simple cases, the equations
3.2, 3.3 may be reduced to a system of pu quasi~-linear equa-

tions in p unknown dependent functions m“, of v variables

v
X

B o 4+ D =0 n=1 - -, (3.5)

where B and D are functions of @“ and x". If these equa-

16



tions are totally hyperbolic4 then there exist (v = 1)
dimensional characteristic surfaces through any point xv such
that linear combinations of the equation 3.5 involve deriva-.
tives of ¢u only in directions lying in these surfaces. This
results in a decisive simplification only under special cir-
cumstances, i.e.,when these derivatives are all in the same
direction, or when the number of independent variables v is
equal to 2. ‘

For a solid which can support a shear stress, only
the latter case has been explored, e.g.,uniaxial motion of a
solid with a purely mechanical elastic-plastic stress-strain
relation.5’6 Even in this case, the characteristic method
is unwieldy except for specially simple boundary conditions.

It is not possible to pursue the argument further
at this point for the case v > 2, until a specific constitu-
tive equation has been inserted, since reduction of Eqs. 3.2,
3.3, 3.4 to the form Eq. 3.5, and the conditions under which
Eqs. 3.5 are totally hyperbolic depend on the specific form of
the constitutive relation.

3.3 Finite Difference Method of Solution

One method of solution of the initial value prob-
lem posed by Eqs. 3.2, 3.3 and 3.4 together with suitable
initial and boundary conditions is to replace the deriva-
tives by suitable finite difference approximations, and to
carry out the integration numerically. The technique has

been used extensively for the ''hydrodynamic" problem.7

As with fluid flow problems, care will have to be
taken to ensure that the solution remains continuous every-
where, if necessary by the introduction of suitable smoothing

. . . . . 8
functions into the constitutive relation.
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In the finite difference method, the continuum is
represented by a finite number of points at distances oxy
apart, and the continuous solution is represented by a series
of average values of the dependent variables over the inter-
vals Axi, At. The original state By of the_body is thus
represented by a finite number of discrete points. The co-
ordinates of a discrete point P in By are a; = (nAxlf Ebxz,

{Axg) where m, £, { are integers.

The deformed state of the body B 'is also repre-
sented by the same number of discrete points, with coordi-
nates of P in B, X being given by the transformation law
Eq. 3.1. These coordinates do not in general coincide with
integral multiples of bx; -

The main difficulty in constructing an Eulerian
finite difference scheme consists in obtaining suitable
finite difference representations of the displacement and
stress gradients in Eqs. 3.2, 3.3. Several ingenious
schemes have been developed for the case of fluids, e.g.,
Harlow's Particle and Force code9 and Kolsky's nearest neigh-
bor code?‘O In these codes the nearest neighbors of the par-
ticle currently being considered are used in an averaging
scheme to deduce the required gradients. Sowme such scheme
could undoubtedly be used in the present instance also.
There are other well-known difficulties associated with the
Eulerian finite difference method. One of these is that
boundaries between different materials are subject to dif-

fusion.

Both of the above difficulties are avoided in the
Lagrangian representation. Gradients are taken with respect
to a; in the initial configuration, and particles are thus
always in the appropriate positions for constructing finite
difference approximations. The stress tensor must be re-
ferred to the initial configuration, but this does not pose
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any special problem. However, the difficulties associated
with severe distortions of the Lagrangian mesh are well known.11
For moderate distortions, however, the formulation of Lagraﬁgian

finite difference equations should not pose any serious problem.

The feasibility of carrying out specific calcula-
tions on present computers in terms of storage and machine
time cannot be adequately assessed until the finite differ-
ence equations are formulated, and a specific problem is con-
sidered. However, some general remarks are possible. We
consider the two-dimensional case (rectangular Cartesian or

cylindrical polar coordinates).

The essential complexities introduced when material
strength is included are the introduction of three stress
components (Ti1, Ti2, Tzz) in place of the scalar pressure,
three deformation gradients (ul,l Uy e) Y 2) in place of
the scalar density, and the introduction of three constitu-
tive equations in the place of one. The latter are also
somewhat more involved, due to the necessity for a yield
condition (discussed in the following section) and the fact
that the constitutive equations are expressed in terms of the

deformation gradients.

In a fluid calculation, it is generally necessary
to store at least eight quantities at each mesh point; for
example position r, z, velocities u, v, pressure p, density
p, internal energy £, and a parameter identifying the par-
ticle, i.e., mass of the particle m. In the present case,
only four kinematical variables are added, two additional
stress components and two additional deformation components.
In addition there may be one or two extra thermodynamic
variables.

The time required for computation of the equations

of continuity, motion and constitutive relations will cer-
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tainly be increased. However, a part of the total computa-
tion time is consumed in logic necessary to advance the cal-
culation. Thus it seems reasonable to suppose that both
computer storage and running time requirements will not be
increased by much more than a factor of 1.5 to 2 for a prob-
lem in which material strength is introduced, over an equiva-
lent fluid problem. Such an increase should not be prohibi-

tive.

It might be argued that when material strength is
introduced, a much finer mesh size will be required to re-
solve the fine detail of elastic-plastic wave interactions.
If such resolution is required, then this is certainly true.
However, numerous calculations have been performed using a
one-dimensional finite difference code6 in which material
strength was introduced, and various mesh sizes were used.
Surprisingly, when extremely coarse mesh sizes were used,
stress profiles still approximated the exact solution
closely, although much of the fine detail was obliterated
by the "smearing'' commonly present in finite difference so-
lutions. Moreover, displacements, which are integrated

quantities, were reproduced very well.

The finite difference method thus removes much of
the fine detail of the numerous wave interactions which makes
computation of elastic-plastic problems by characteristic
methods so laborious, while preserving nearly correct aver-
age behavior, the degree of "filtering' of fine detail de-
pending on the coarseness of the mesh size. It is expected
that a two-dimensional code would behave similarly. The
mesh size would thus depend on the degree of detail re-
quired in the solution. For some purposes, this may not re-
quire a decrease in mesh size over that suitable for an equiva-

lent fluid calculation.
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It would thus appear from these preliminary con-
siderations that it is feasible to write a finite difference
code, particularly using the Lagrangian viewpoint, and to
carry out useful calculations on presently available computers.
Detailed estimates of storage and computation time requirements
are impossible until such a code is formulaﬁed, and some ex-
perience has been gained in its use, so that a realistic assess-
ment of required mesh sizes for specific requirementé can be

made.

It might be noted that finite difference approxima-
tions can be developed for the equations of continuity and
motion, Egs. 3.2, 3.3, quite independently of the specific
form of the constitutive relation. A computer code could thus
be developed which contains the kinematical relations, the
logic necessary to determine gradients, and to control the
progress of the calculation through the space-time net, with-
out reference to a specific constitutive rélation, leaving
provision to insert a specific constitutive relation as a
sub-program. One requirement is that the constitutive rela-
tion must provide a unique stress increment corresponding to
a specified strain increment at each step of the calculation,
and that these increments be of the same sign. Thermodynamic
and nonmechanical processes can be included in the sub-
program, as can provision of a material 'memory'' for the con-
trol of strain hardening and similar effects. This is a con-
siderable convenience. The latter processes are open to some
speculation, while the kinematical relations are, of course,
well established. The constitutive relation could thus be
altered very simply by replacing a sub-program, without af-

fecting the main program.
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4. CONSTITUTIVE RELATION

The form of the constituti&e relation Eq. 3.4 is
not completely arbitrary. As is well known, certain integra-
bility conditions must be satisfied. Invariance of the con-
stitutive relation under rigid body motion demands that only
the symmetric part of the deformation grad;ent u(i’.) may
enter, since the antisymmetric part U[i,j] represents a
rigid body rotation, for which the reaction of the material
should not alter. Furthermore, invariance under coordinate
transformation requires that stress and deformation tensors

should enter only through their scalar invariants.

Except under very special circumstances, the state
of the material is not uniquely described by kinematic quanti-
ties alone. It is necessary to introduce thermodynamic
quantities and to consider the interaction between the kine-
matics and thermodynamics. While numerous studies have been
reported, the thermodynamic treatment of a solid is still in
a somewhat speculative stage.

To provide a basis for discussion, we present the
salient points of the thermodynamic argument. TFollowing
Trucsdell,lz the internal cnergy is introduced as a set
function to balance the total energy, entropy is introduced
as a dimensionally independent state variable which, to-
gether with the substate, suffices to determine the internal
eneryy, thus leading to the concept of a caloric equation of
state. Temperature and thermodynamic tensions are introduced
as derived variables, and cquations for entropy production
follow. The material description is completed by supplying

phenomenological relations which govern dissipative processes.
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We do not pursue arguments of the existence of a
caloric equation of state, or of the applicability of the
equations for entropy production for nonequilibrium processes.

1
These are discussed at length in most thermodynamic tex't:s.“3’14

4.1 Thermodynamic Relations

In addition to the fundamental principles of con-
servation of mass and momentum, which lead to the equations of
continuity and motion, we have the principle of conservation
of energy. We may write for a body

K+E=W+D (4.1)

where K is the kinetic energy of the body, W the mechanical
power applied to its surface, and D the ncn-mechanical power
supplied to the body. The quantity E is an additive set
function, termed the internal energy, such that the total
energy (K + E) is balanced. Evaluating each of these terms
in integral form, the result, when simplified by the use of
the equation of motion, is for the element dxi

PE = T,. U, + Pq (4.2)

. — h,
ij 1,3 k,k

The increase in internal energy is thus due to the external

supply of non-mechanical energy QE’ where

Qp = Pq — hk,k (4.3)
and the external stress work, PE given by
P. = T.. U, . (4.4)

E 1j '1,]

Here € is the specific internal energy E = J  &dm, h denotes
the efflux of nonmechanical energy, and q is the supply of

nonmechanical energy (by arbitrary sources and sinks).
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It is sometimes convenient to decompose the stress
and deformation rate tensors into spherical and deviatoric
components. By virtue of Eq. 3.2 we obtain for PE

- 5 ! ‘1
Pp = p P/ + Tij Uiy, 3) (4.4a)
where the prime denotes the deﬁiator, and the spherical

stress 1/3 Tk =~ Ps where p is the pressure.

<k
There arc a number of parameters which affect the

internal energy. Some of these are the deformation gradi-

ents ui,j' In general, let there be M parameters influencing

the internal energy, denoted by V . The set Y is regarded

as given a priori, and defines the thermodynamic substate.

The basic assumption of thermodynamics is that the
substate plus a single other dimensionally independent scalar
parameter suffice to determine € without reference to time,
place, motion, or stress, i.e. we postulate the existence of
a caloric equation of state

e = f(s, ¥ (4.5)

-—.

where s is the specific entropy.

The temperaturc T and thermodynamic tensions Ty

are defined as

_ Q¢ v \
T = s (¥ constant)
(4.6)
< = og ( Ve e . oy v -+ - v constant)
= E§va S, "1 a-1, o+ M
In view of Eq. 4.5
T =T(s, ¥ % = Ta(s, s (4.7)
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If all functions so far introduced arec regular and

reversible, then as consequences of Eq. 4.5, 4.7

s =s(T. ¥ e=¢(1,y) 1% =1%, ¥ ©(4.8)

These equations are known as thermal equations of
state, any one of which is insufficient to determine all the

state functions.

In our case, the definitions Eq. 4.6 imply

PE = pTT V + PTS (4.9)

This cquation, in parallel with Eq. 4.2 implies
that the increase in internal energy is due to the inmer
stress power PI and the inner supply of non-mechanical

energy QI’ i.e.

pE = Py + QI (4.10)
where
a -
Ppo=PT vy (4.11)
and
Q = PTS (4.12)

From Eqs. 4.2, 4.12 we have an expression for the production

of entropy

S = - L
PTs = Pp — Py + QE (4.13)

Thus the production of entropy is due not only to
the external heat encrgy flux, but also to the cxcess of ex-
ternal power over the internal power, i.e.,to the dissipative
work done. We express this latter quantity in the general

form
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a -
PE — 1)1 = p—y VCl (4.14)

Equation 4.13 may now be expressed in the form

PTs = Pya oa - b T Pq (4.15)
or rearranging
h h T
: Kk ~Pq_Pp as __ k,k
Ps + T’) LT TY Vg T (4.16)

The terms on the left represent the ''reversible' rate of
entropy flow into the element, while the terms on the right
are usually considered to be the "irreversible' part of

the entropy production. This may be written

_ P a 1
=gy Vg~ hk‘ T ) | (4.17)
s 1<
and is subject, by the second law of thermodynamics, to

the inequality

r> 0 (4.18)

The results are indefinite until specific quantities

are inserted for the substate Y. We fecilow usual practice in

irreversible thermodynamics and generalize still further.
Noting that the "irreversible' entropy production may be re-
garded as the sum of products of generalized thermodynamic
forces Fa,(éa, (1,T) k) and corresponding generalized thermo-
dynamic fluxes faﬁpyd/T, — by j, Eq. 4.17 takes the bilinear
form

a R
r =~ fa (4.19)

which by Lkq. 4.18 is positive definite (or zero).
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It is necessary to express the relationships be-
tween the fluxes and forces. The assumption is usually

{
madel’

that the equations for entropy production are only
valid for states very near thermodynamic equilibrium (I' = 0)
for which the relations between the forces and fluxes may be
regarded as linear, whatever their actual fbrm, i.e. there

exist phenomenological relations of the form

el £q (4.20)

The Onsager reciprocal relations, following from

the property of microscopic time reversal invariance, state

that the matrix of coefficients 195 is symmetric. Thus
a &
g_s_ = 9._5.‘_ ([|,,21)
ofF  of”

i.e.,the forces are "irrotational' in the flux space, which
is the necessary and sufficient condition for the existence

of a dissipation potential @ such that

L (4.22)
of”
The potential has the form
0 = % L £,y = % r* £, = %— r (4.23)

The dissipation potential is thercfore one half of the ir-

reversible entropy productiorn.

While a general extension of Onsager's relations
to nonlinear phencmenological relations has not been forth-
coming, ZieglerlSAon the basis of certain orthogonality con-
ditions, postulates the existence of a potential Eq. 4.22

for general rclations of the form
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2 a
F" =F (£) (4.24)

We now discuss two important constraints. Consider
first a process in which no dissipative work is being done,
i.e. P = PI. A necessary and sufficient condition is, from
Eq. 4.13

PTS = Pq — h ' (4.25)

2
A sufficient condition is Pq — hb K =Y, i.e. adiabatic
Ny —_— .
conditions, which in the present case also implies s = U, i.e.
isentropic conditions. Equation 4.2 reduces to

PE = T, U, . (4.26)
1) 1,3

and the internal energy is thus a nondissipative strain en-
ergy potential. In view of LEqs. 4.8 it is thus possible to
eliminate thermodynamic quantities from explicit considera-

tion, and to characterize the material by a stress-strain

relation of the form

f(~ ) = U (4.27)

ii0 (i, 1)
for a specific value of entropy.
We introduce the frece energy, defined by
v =& — sT (4.28)
From Eq. 4.9 we have
py = p1o v — psT (4.29)

Thus
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[~}
i

= — %Z (¥, constant)

T
(4.30)

a _ oy .
™ = 5%; (T, v, « - - Vaer? Yarr 7 Vy constant)
and in view of Eq. 4.8

y = (T, v) - (4.31)

For nondissipative process, i.e.,-PE = PI, and the

constraint T = 0, i.e., isothermal conditions

pu = 1., G, . (4.32)

1} 1,3
and the free energy is a strain energy potential. In view
of Eq. &.31 it is again possible to climinate thermodynamic
quantities from explicit consideration and to characterize
the material by a stress-strain relation of the type Eq.
4,27, but for a specific value of temperature.

4.2 Special Cases

The equations in the previous subsection are quite
gencral, but also indefinite, until specific quantities Vo
are inserted. In this scction we mention some of the speci-
alized theories of interest in the present context and their

connection to the general theory.

Consider a body deformed from some initial state
by suitable surface tractions. If the body is subsequently
unloaded and returned to its initial temperature, gencrally
only part of the deformation will disappear. Observation
of the body in the large does not give an indication of the
behavior of the material, however. It is nccessary to
isolate a volume element from the body by cutting, to
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remove the influence of vesidual stresses imposed by the
surrounding material,if we wish to observe the material in

its natural statc.l6

Observing such an element, we assume
that after the application of a stress, if the clement is re-
turned to its initial state of stress and temperature, then
only a part of the deformation will disappeér. We term this
part the recoverable deformation. The remaining deformation

will be termed the irrecoverable deformation. The recover-

able part of the deformation will be limited by a yield

condition.

For a wmotion in which all deformations are re-
coverable, we assume that the substate Y is defined by the
six deformation gradients Uiy )" We divide the total stress

2

into two components

1, =1, + 1P, (4.33)
ij ij ij
where z? is the nondissipative stress, so that

Py = T?j lllijj (4.34)

and the remaining stress EP is called the dissipative stress.
Then the equation for centropy production, Eq. 4.15 becomes
D

PTs = T-. u. . — h

15 Y K,k + pPq (4£.25)

Solution of motions in general elastic media with
viscous dissipation and heat conduction then may proceed from
the equation of continuity Eq. 3.2, the equation of motion
Eq. 2.3, the energy equation Eq. 4.2, and the cntropy equa-
tion, Eq. 4.35, together with a caloric cquation of state
Eq. 4.5 (or two thermal cquations of state Eqs. 4.8, 4.82)
and phenomenological relations connecting T?i and ﬁ(i,j)

and hk and (1,T) K subject to specific initial and
N )



boundary conditions. Body forces Fj and heat sources q are

considered to be specified a priori.

We now consider motions which include irrecoverable
deformation. In addition to the total deformation gradients,
the substate v must include functions of the irrecoverable

-

part of the deformation. While this case is receiving con-

siderable attention%s’ 17, 18, 19 a satisfactory general
treatment has not yet been given. We therefore consider

some special assumptions which allow simplification.

In the '"hydrodynamic' theory? it is assumed that
the motion is adiabatic (QE = 0) and that the deviatoric
stress work is negligible compared to the spherical stress
work. With these assumptions, Eq. 4.2 using the decomposi-

tion Eq. 4.4a becomes
PE = p P/P (4.36)

In most compacted materials, a purely spherical
deformation is almost all recoverable. Neglecting volume
viscosity Eq. 4.15 reduces to the statement s = 0, and the
motion is isentropic. These are the equations for a per-
fect fluid.

At possible shock waves, dissipative mechanisms
come into play so that entropy changes may occur. These can
be handled by applying the Rankine-Hugoniot relations4 to
calculate the entropy jump at a shock. When the strength
of a shock wave varies as it propagates, the motion between

“The term hydrodynamic is unfortunate since the theory de-
pends on the compressibility of the medium for its basic
assumption, while the term hydrodynamic has hitherto been
applied specifically to incompressible fluid flow. Since
the term is in fairly wide use in the present context, it
will be retained here.
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shock waves is isentropic but not homoentropic (s i ¥ 0):
)

Frequently an artificial viscous dissipation term
is added to Eq. 4.36 which is so formulated that it is o
negligibly small except in regions of very high gradients,
i.e. at shock waves. This well-known mathematical device
renders the solution continuous and makes the equations
amenable to solution by finite difference numerical integra-
tion methods, while.preserving correct isentropic flow away
.from shock waves.8 Equation 4.36 takes the form

PE = p P/P + Tij “&i,j) (4.37)

Noting Eq. 4.8 and the fact that the only quantity
entering the substate Y is P, so that T reduces to a
function of p, we have the thermal equation of state

e =¢&(p, P) (4.38)

We may proceed from Eqs. 3.2, 3.3, and 4.38 without
explicit reference to the entropy equation.

Temperatures may be estimated if, in addition, the

specific heat at constant pressure (p = 0) is Imown.l

It is clear that the hydrodynamic theory is only a
reasonable approximation at very high pressures when the yield
stress is negligible by comparison. A further condition is
that the deviatoric deformation rate be of the same order as
the spherical deformation rate so that the deviatoric stress
work is in fact negligible compared to the spherical stress

work.

We turn now to the problem of the mathematical
description of the transient response of a solid body to in-

tense impulsive loads.

Part of the motion will occur under very high pres-
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sure. Provided that the yield condition is not altered so that
the material is never able to support a very large deviatoric
stress, the hydrodynamic theory will provide a reasonable ap-

proximation to this phase of the motion.

Part of the transient motion will, however, occur
at relatively low pressure, where the hydrodynamic assumption
will be violated. If the low pressure part of the motion con-
tributes significantly to the overall response, then the hy-

drodynamic theory will be inadequate to describe the motion.

It will be necessary, under such conditions, to con-
sider a full thermodynamic treatment of the problem. Such a

treatment has so far not been given.

In the interim, it may be useful to attempt to in-
corporate material strength as an approximate correction to
the hydrodynamic theory, without explicit reference to the
entropy balance equation. While this might be done in a
number of different ways, one might make the following as-

sumptions:

a) The motion is adiabatic.

b) The yield stress is not increased by a very
large amount at any time in the motion. During any high
pressure phase of the motion, the treatment will then be
equivalent to that of the hydrodynamic theory, since the
yield stress will be negligible compared to the pressure.

c) The energy dissipation in irrecoverable
(plastic) deformation is negligible compared to the energy
stored in recoverable (elastic) deformation. The motion
will thus, in effect, be assumed to be isentropic. This is
justified (providing assumption b is valid) in the high pres-
sure phase of the motion, but may be seriously in error if
a large amount of irrecoverable deformation occurs during

the low pressure phase of the motion. Entropy changes may
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still occur on shock waves where they are handled by the
Rankine-Hugoniot relations, as in the hydrodynamic thaory.

d) The material properties can hardly be as-
sumed to be temperature independent. However, we assume
that the temperature may be estimated from the spherical
deformation as in the hydrodynamic theory. This entails
two assumptions, viz.,that the energy stored in deviatoric
recoverable deformation is negligible,which follows from
assumption b above, and that the temperature increase due
to energy dissipation in irrecoverable deformation is negli-
gible, which follows from assumption c above.

Denoting by u® the recoverable part of the de-

formation, the energy equation, Eq. 4.2, thus becomes

.

= ‘€
pE = Tij ui,j (4.39)

while the entropy equation again reduces to s = 0 between

shocks. Equation 4.39 expresses the fact that there is an
elastic strain energy potential P& = ¥ such that

Ti3 © dwe
ou? .
Ui,

(4.40)

and the constitutive relation reduces to a stress~strain re-
lation involving the recoverable part of the deformation.
Also needed is a yileld condition to determine, in effect, the
proportion of the deformation which is recoverable.

The elastic stress-strain relation is applicable
to a specific value of entropy. Provision must be made for
entropy production at shock waves with a corresponding change

in the strain energy potential.
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5. ELASTIC BEHAVIOR

5.1 Finite-Strain Theory

In this section we investigate the possibility of
describing the recoverable part of the deformation in terms

20

of finite-strain elasticity theory. Following usual prac-

tice, we employ the Eulerian strain tensor

+ u, (5.15

€ . = l(u . +u, | — Lou, )
kj 2 Y7k, ] j,k i,j i,k
Between shccks, the motion is isentropic (s = O)
and there exists a strain-energy potential ¥ = p€. By Egs.
4.5 and 5.1, the strain-energy potential is a function of
strain only, at constant entropy ¥ = ¥(¢). This function is
represented, for an isotropic homogeneous medium, by a power

series expansion in the strain<invariants.'

2 3
¥ = al, + bI, + cIo + L1, + mI;Io + nlag + + - - (5.2)
where
- -1 -
I =€y I, = Y(Gij Eji €14 ejj)
=1 -
Is = 202855 €50 S0 = 345 €54 Cac ¥ %41 945 S

To conform with the requirement that the
stress vanish in the unstrained state and that the theory
agrees with the classical theory for infinitesimal strain,
we set a =0, b= (+ 2u)/2 , ¢ == 2u where A, L are the

adiabatic Lame’ constants.

With the definition Eq. 5.1, the stress-strain law

may be obtained from the strain energy potential by
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. Y
Tiy = Op = 264 (B_‘e )

(5.3)
kj )

S

Including only terms shown in Eq. 5.2, the stress-
strain law thus takes the form )

— 4L €. €,

T = 5 i
rs P/Po {All rs T % ELg ri is

2 .
- (2N + m) I, S (34 + m)I, srs + ml, srs

2
+ ngrsla -~ 203 + m)I, S 2m € €44 I

— 2mlz €.~ 25 Iy j (5.4)

where

L. i, =050
ri 1S rs

and the density ratio is given by

1 /2

P/“Po = (l - ZI]_ + 412 - 813) ! (5.5)

If the material constants A, u, /, m, n can be
found, Eq. 5.4 and Eq. 5.5 provide a complete description
of the elastic behavior at constant entropy to within the
approximation implied by Eq. 5.2.

1f the value of entropy is changed, the numerical

values of the coefficients will be altered.

Note that a parallel development holds for iso-
thermal conditions (T = 0) when, from Eq. 4.32, there exists
a strain energy potential ¥ = py(g). This strain energy po-
tential may be expanded in the same way as in Eq. 5.2, lead-

ing to an identical stress-strain relation Eqs. 5.4, 5.5
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except that the constants A, i, £, m, n now apply to iso-
thermal conditions. Their numerical values will be differ-
ent from those of the isentropic theory and will be al-
tered if the value of temperature is altered. ’

To complete the description of the material, the
coefficients A, i, £, m, n must be evaluated. Before pro-
ceeding we write down some further results which will be

useful.

For a purely spherical strain eii/3 = ¢, the re-
lation between spherical strain and spherical stress or pres-

sure T,;./3 = — p can easily be found from Eq. 5.4

S /2
- p=<e(l— 2e) / {(% + 2u) + (272 + 9n + n)JL (5.6)
while the density ratio Eq. 5.5 becomes

)"

P/Po = (1 — 2 (5.7)

Combining Eq. 5.6 and 5.7 gives

7/3
T e
Po

5/3

1 Sy 1
p=7{ J’{(37\+2u)+7(27£+9m+n)

L
Po

2/3 g

f (5.8)

1 P
—7(2717, + 9m + n) (p_o‘

It is desirable to derive the elastic moduli for
a material subjected to a spherical strain. We follow the

method of Birch?l

If a small perturbation is produced in a state of

uniform spherical strain, then we may write

g =2 6rs +oe o (5.9)
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where LN the perturbation strain, is assumed to be in-
finitesimal. The strain invariants of €. may then be

written

Il=3€,+1;

2
Io = 3e + 2eI) + I3
3 2
In = e + e I + I3 + 14

where the invariants I}, I3, Ii refer to e,.o- Neglecting
the second and third invariants of e, and inserting in Eq.

5.5 we find, approximately

p/ps = (1 — 20)7% {1 - L 5.1
/Po = ( e) T=7s | (5.10)

Decomposing the stress in a similar way to the
strain we write
T =—pb__ +o0 (5.11)

rs rs rs

where the perturbation stress O corresponds to the strain

2rg’ and we find a relation between Os and € analogous
to Eq. 5.4

a/2
Opg = (1 - 2¢) / {% - e(5n + 2p — 184 — 7m — n)
2 . o . 1
- (65£+23m+3n)j"brs I}
3/2j . )
+ (1 — 2e) l2u — 2(6N + 84 + 3m + n)
— 2 (5¢ om) e )
e (542 + 12m) j 2L (5.12)

Denoting the total displacement of a point P
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as u = U, + u', where uo is due to the spherical strain, and

'3' is due to the perturbation, we find

_ { 1/2‘ 1/2 .
ui,j = 6ij 1 - (1 - 2e) } + (1 — 2¢) i

Inserting this in Eq. 5.1 and neglecting powers of u' higher
than the first, we obtain

ey = u&i,j) (1 — 2e) . (5.13)

To obtain the shear modulus, we set 0;; = Ogp =
Uas = Uz2a = 03y = O and ud = ug = 0. Then

From Egqs. 5.12, 5.13 this becomes

1 5/2 ,
G = 7(1 — 2e) {Zu — e(6AN + 84 4+ 3m + n)
(5.14)
— 22(544 + 12m)J

To obtain the bulk modulus we set 0;p = Oz =
Y

031 = 0 and 0y, = Ozz2 = Oaa, U]: = ‘le' = us'. Then

K=—gu
ul

1.1

which from Eqs. 5.12, 5.13 becomes

1 ss2 [
K=3(1- 2¢) (3N + 2u) — e(21A + l4p — 542 — 18m — 2n)
(5.15)
— ¢2(2432 + 81lm + 9n) j
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To obtain the uniaxial strain modulus, we set

Ozz2 = 0Oaa and uz = uz = 0. Then

F=._o_l.l.

ul

1.1

which from Eqs. 5.12, 5.13 becomes

5/2 : ‘
F = (1-— 2) {(% + 2u) — e(11N + 10 — 182 — 4m)
' (5.16)

12
— 22(1172 + 35m + 3n)}

We may note that F = K + 4G/3, i.e. the moduli
bear the same relationship to one another as in the in-

finitesimal classical theory.

The corresponding infinitesimal shear, bulk and
longitudinal wave velocities are //G/P , /K/P and J/F/P.

A more elegant derivation has recently been given
by Toupin and Bernstein22 and Hayes and Rivlin23 from the
consideration of jump conditions at a finite amplitude wave.

5.2 Evaluation of Elastic Constants

Most of the recent experimental determinations of
adiabatic elastic moduli have been made using the ultrasonic

24,25 Measurements have been made for

pulse-echo technique.
a large variety of materials, both polycrystalline and in
single crystal form,at ambient temperature and at zero pres-
sure.

A number of studies have included a measurement
of the dependence of the elastic moduli on temperature. It
has been shown that, for many materials, the elastic moduli

show similar behavior. (See sketch)
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Abov2 the Debye tempera-
ture 6 the elastic moduli
generally show an almost
linear decrease with tempera-
ture to a finite value at the
melting temperature TM' Be-
low the Debye temperature,

Elastic Modulus

creases, approaching zero at

)

|

[

|

5

: the slope of the curve de-
!

i

1

zero temperature.

6 T

Measurements of elas-
Temperature

tic moduli at ambient pres-
sure (1 atm) lead to values of the first order elastic con-
stants. In the case of an isotropic medium, these are the
Lamé constants.
Several studies have been performed under hydro-
static pressure and the dependence of the elastic moduli on

26,27,28,29 Due to limitations

pressure has been reported.
in the technique, pressures have been limited to about 10 kb.
Nevertheless, the data are sufficient to determine the pres-
sure derivatives of the elastic moduli. Most of these de-

terminations have been for single crystal specimens.

In an isotropic medium, only two moduli can be
determined; the longitudinal modulus F corresponding to the
longitudinal wave speed, and the shear modulus G corres-
ponding to the transverse wave speed. The measured pressure
derivatives would then give two relations for the second
order elastic constants £, m, and n through Eqs. 5.14 and
5.15. These relations are insufficient to detemmine £, m,

and n separately.

Hughes and Kelley30 in addition measured wave ve-

locities under conditions of uniaxial stress and thus obtained
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sufficient information to determine £, m, and n separately,
in a manner somewhat analogous to that subsequently sug-
gested by Toupin and Bernstein?2 However, the serious dis-
advantage of this method is that the. static uniaxial stress
cannot be carried to high values without causing permanent
deformation in most materials.. The values 6f the second-
order constants determined by Hughes and Kelley for poly-
styrene, Armco iron, and pyrex are correspondingly véry un-
certain.

Information relevant to the second-order elastic
constants may also be deduced from adiabatic compressibility
data under spherical stress, through Eq. 5.8, or equivalently
through Eq. 5.15, noting that K = P(aP/BP)S-
compression experiments have been carried out to pressures

Hydrostatic

of 100 kb, but refer to isothermal conditions. Under the
assumption that the yield stress remains small, so that the
deviatoric stress may be neglected in comparison with the
spherical stress at high pressure, the shock wave and material
particle velocity measurements of McQueen and Marsh31 and of
Altshuler et a132 in plate impact experiments may be reduced
to pressure-density information through use of the Rankine-
Hugoniot relations. Such experiments have been carried out
to pressures of about 4 Mb, but refer to the shock Hugoniot.
Adiabatic compressibility data may be approximately inferred
from both the isothermal data and hugoniot data by use of
the Mie-Gruneisen equation.1 Compressibility data on the
zero temperature isotherm may be similarly inferred.

If the neglect of terms of order greater than €2
(Eq. 5.2) is justified, then we see from Eq. 5.8 that a plot
of

A
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7/3
e e\
Po Po

2/3
vs. (P/Po) / should be a straight line. Moreover the values

of (A + 21/3) and (274 + 9m + n) may be found from the slope
of the line and its intercept with the ordinate.

We have, so far, made only a preliminary comparison
for copper. Data for the zero temperature isotherm up to
2.7 Mb are available, and are shown plotted in figure 5.1. The
high pressure points are those of Altshuler,32 while the low
pressure points were taken from a recent reintegration of the
data of McQueen and Marsh.6 It is very encouraging that the
data can be fitted adequately by a straight line, suggesting
that additional terms are not required in the expansion,
Eq. 5.2. The straight line fit yields (A + 2u/3) = 1440 kb,
and (272 + 9m + n) = — 5880 kb.

Data for adiabatic conditions are available only
up to 500 kb; (Walsh et all). Two adiabats are plotted in
figure 5.2, one passing through ambient conditions (P = O,
T = 293 oK) and one passing through a point at 500 kb on the
hugoniot, and thus referring to a different value of (con-
stant) entropy. The straight line fits yield (A + 2u/3) =
1403 kb, (27£ + 9m + n) = — 5840 kb and (A + 2u/3) = 1387 kb
(272 + 9m + n) = — 4460 kb, respectively. The value of
(N + 2u/3) = 1403 kb on the adiabat through ambient conditions
may be compared to a value of (Ci, + 2C;2)/3 = 1370 kb
measured by Daniels and Smith2 by the pulse~echo technique,
and a value of K, = 1414 kb found from static compressibility

data corrected to. adiabatic conditions.33

Note that, so far, the comparisons in figures 5.1

and 5.2 constitute only a new empirical fit to the compressi-
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bility data, the only interesting fact to emerge is that it is
apparently sufficient to include terms only up to those shown
in Eq. 5.2 to fit the data up to 4 Mb. To demonstrate the '
existence of a strain energy potential, and the applicability
of the foregoing theory, it would be necessary to measure

the velocities of all nine possible kinds of waves in a medi-
um subjected to an arbitrary homogeneous deformation, and
verify that they satisfy the relevant compatibility condi-
tions‘.‘i4 If the yield stress is negligibly small at high
pressure, however, only two distinct wave velocities are ob-

servable.
35 . .
Altshuler et al.]” have reported an experiment in

which both these wave velocities have been measured. The
"overtaking~relaxation method" yielded the speed of the bulk
wave, which corresponded toJK/P, determined from the adia-
batic compressibility data. The 'lateral relaxation method'
led to velocities which were higher than the bulk wave ve-
locity and corresponded to the longitudinal wave velocity.
Only one measurement is available for copper. The measured
velocity of a longitudinal release wave propagating into
material shock loaded to 407 kb was found to be 6.33 Km/sec,
yielding K + 4G,/3 = F = 4290 kb. We have values of (A + 2u/3)
and (27£ + 9m + n) for isentropes through 500 kb and O kb on
the hugoniot only, but by rough interpolation the isentropic
bulk modulus at 407 kb is found to be K = 3160 kb. Thus

G = 850 kb approximately, which may be compared to the value
of W = 478 kb at zero pressure. Although both the measurement
and the comparison are very rough, there seems to be a sub-
stantial increase in shear modulus with pressure. Careful
measurement of the velocities of longitudinal release waves
propagating into material shock compressed to a variety of

pressures should provide sufficient information to determine
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if Eq. 5.14 is adequate and to provide an independent determi-
nation of another combination of the second-order elastic con-
stants.
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Figure 5.1. Compressibility data for the zero temperature
isotherm for copper to 2.7 Mb.
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6. YIELD BEHAVIOR

6.1 The Mechanics of Yield Behavior

In this section we investigate certain aspects of
the yield condition relevant to the problem at hand.
To avoid unnecessary complication due to finite strain
effects, the initial development is restricted to infini-
tesimal strain, and comparisons will be made with experiments
in which the compression is very small. The development is
also limited to isotropic, homogeneous media.

We recall the stress decomposition
=T5,, + T}, (6.1)
The spherical stress v = 1/3'1'ii = — p is here

taken to be nondissipative. The stress deviator is fur-
ther divided into two components.

1 —_ ) oo
iy o5 + Tij (6.2)
where 1% is a (viscous) overstress, which depends on the

strain rate and is zero when the strain rate is zero.

The strain is divided into two parts, a recoverable
elastic strain €® and an irrecoverable plastic strain €p, i.e.
= ¢© p
€,. = €7, + €, .

ij ij ij (6.3)

In conformity with the stress decomposition, we

assume that the spherical strain is entirely elastic and
that the plastic strain involves no volume change and is thus

independent of pressure.



It is consistent with the concept of an equilibri-
um yield stress and a transient overstress to describe the
stress-strain behavior in the manner suggested by Malvern§6'
We can generalize the uniaxial description to a triaxial

description as follows:
The total strain rate is the sum of an elastic

and a plastic component,

. e “p .
eij eij + eij ‘ (6.4)

The elastic component is related to the stress rate by
Hooke's Law,

o =_l_'. 1 .
eij 5G Tij +~§K61j1 (6.5)

The plastic component is given by a strain-rate function,

7!, A
P m g il (6.6)
1] ?

T is the von Mises effective stress: in terms of the three
principal stresses this is given by

T = Q/%'{(Tl -~ 12)%2 + (12 — 13)% + (74 — Tl)%} (6.7)

G and K are the elastic shear modulus and bulk modulus, which
will be considered functions of the state of the material.
The strain-rate function, g, is also a function of the state
of the material but primarily dependent on the overstress.

It will be observed that Eq. 6.6 parallels the
Reuss equations for quasi-static plastic flow.37 Besides
the proportionality of strain rate and deviatoric stress
we have tacitly assumed therefore that the principal axes



of strain rate (or of strain increment in time dt) coincide
with the principal axes of stress and that the rate of volume
change in plastic flow is zero. Furthermore we notice that
on squaring both sides of Eq. 6.6 and summing we obtain

g = €F (6.8)
where €P is formed from égj as T is formed from Tij in
Eq. 6.7. '

We will immediately specialize Eq. 6.6 further by

taking g to be a function of the "von Mises effective over-
R

stress, that is to say we write
g = g(t) (6.9)
where T =T — 0, and g satisfies the yield condition.

Clearly it will be a convenience in this formulation to use
the von Mises yield condition; we will do so, and write the
equilibrium yield condition

T =Y (6.10)

The customary geometrical interpretation can be
given to these equations. We plot the values of the princi-
pal stresses along Cartesian coordinate axes. Equation
6.10, the equilibrium yield condition, is represented by a
right circular cylinder of radius +/2/3 Y whose axis is the
line 0y = 0z = 03. The stress I is represented by a point
on a coaxial cylinder of radius ~/2/3 7. The normal distance
from this point on to the equilibrium yield surface is the
difference between the radii, +2/3 ?*.

An increment of stress AT 1is represented in this
space by a vector which can be resolved into two components
parallel to and normal to the cylinder axis. These are the

dilatational and deviatoric components of the stress incre-~



ment. Equation 6.5 shows that the accompanying elastic strain
increment has dilatational and deviatoric components related
to the corresponding stress components by the proportionality
factors 1/3K and 1/2G, respectively. Thus we may represent
the elastic strain increment and its components by the stress
increment vector (AC, say) and its componenfs (AB, BC, say),
bearing in mind the different proportionality factors for the
two components. '

The vector AC may also be taken to indicate the
change in the plastic strain rate. The plastic strain rate
before the stress increment is zero if A lies within the
equilibrium yield surface. If A lies outside it, Eqs. 6.6
and 6.9 show that the plastic strain rate is directed along
a vector MA, where M is the foot of the normal from A on to
the equilibrium yield surface, and its intensity is a func-
tion of the length MA. Likewise the plastic strain rate
after the stress increment is either zero or is represented
by the outward normal NC from the equilibrium yield surface.
It may be observed that NC need not contain B since BC may
have a component parallel to the yield surface, corresponding
to a change in the direction of the plastic strain rate but
not of intensity. Its component normal to the yield surface
corresponds to a change of intensity of plastic strain rate
but not of direction. The vector AB corresponds to a change
in hydrostatic pressure and is associated with no change in

plastic strain rate.

In this analysis of strain-rate dependent yield
behavior we will express the constitutive equation in terms
of strain rates and stress rates. We will assume that the
values of the elastic moduli G and K, the equilibrium value
of Y and the function g(?*) can all be described in terms of

the state of the material. We postpone for the moment a
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discussion of the way in which Y and g(?“) vary with the
state of the material.

Usually we can presume G, K and g to be functions
of the strain and the temperature; Y is dependent on the
complete history of the material.

Because the conservation equations are written in
terms of the total strain, the constitutive equations should
also be so written and not left in terms of elastic and
plastic strain components. Manipulation of Egs. 6.4, 6.5,
6.6, and 6.9 gives

Ts s

*
. e 26 _— —
Tij ZGEiJ. + (K 3—) 5ij €k — 26 g(r ) Ll (6.11)

Al

The equation includes elastic behavior if we write g(?“) = 0

when T < O.

It may be remarked that the neglect in Eq. 6.11
(or in Egs. 6.4, 6.5, and 6.6) of time derivatives higher
than the first implies that we are not concerned with changes
in behavior over a time interval as small as that required to
accelerate the dislocations, whose movement causes plastic
strain, to their terminal velocities. This time is probkably
of the order of 10 *%
tion both of our experimental observations and our computa-

seconds. In view of the time resclu-

tions, the neglect of second and higher order time derivatives
is acceptable.
We will now specialize the description of the strain-

rate dependent behavior in three dimensions to the cases of

uniaxial stress and uniaxial strain.

For all axially symmetrical situations the princi-
pal components of stress and strain may be written (Tx, Tes Tt),
(Ex, €t, €t), respectively, where the subscript x denotes the
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axial direction and the subscript t a transverse direction.
It follows that

T = [T, — 7| - (6.12)
Equation 6.11 becomes in the axial direction,
. - 4G . ‘I'G . LFG %
T, = (K+x) e + 2K—-72) e, —g(T) . (6.13)
and in the transverse directionm,
- _ 26y . _ 2Gy ¢ 2G =%
Tt (K 3—) €x + (ZK 3—-) Gt + -3— g(T ) (6.14)

To obtain the equation for uniaxial stress, we put %t =0
and eliminateAét between Eqs. 6.13 and 6.14. Recalling that
Young's modulus, E = 9KG/ (3K + G), we obtain

T = Eéx -5 g(T) (6.15)

1f Y(€x) is the yield stress in simple tension for an equiva-
lent work-hardened state,

Ja
ral

T o=t = Y(E) (6.16)

X

Equations 6.15 and 6.16 describe the strain-rate dependent
behavior in uniaxial stress for a given function g(?*). It
will be observed from Eq. 6.15 that the function g, defined
by Eq. 6.6, differs from the function used by Malvern36 by
the factor 2E/3.

The equation in the axial direction for uniaxial
strain is obtained immediately from Eq. 6.13 by putting

ét = 0.
io= (K + 48y ¢ - 46 g7 (6.17)

X 3 X
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In order to use this equation and retain a one-dimensional
description we must express T in terms of T and €x. This

can be done as follows.

In uniaxial strain

ét = éi’ +. étl;) =0 (6-18)

and since the plastic strain has no spherical componént

p p _ .
P+ 2¢b =0 (6.19)
Therefore
. ee ‘o
€= St 2e~:t (6.20)

If we now write éi and ég in terms of Ty and Te using Eq. 6.5

we obtain

¢ o=k G2 (6.21)

This equation may be integrated and rearranged to give
t .
_ [k 1
T, —f > € dt =5 T (6.22)

Recalling Eq. 6.12 we can now write down the value of ?*,

namely

-

£3 3 t . .
T =%{TX —-f Ke dtj\ -0 (6.23)

and we have achieved our objective.

It may be convenient to express the overstress

T" in terms of the current state of the material, and this

can be done at the expense of introducing an assumption

39

about the nonlinear elastic behavior. We follow Wood and

1

Rice et al. and take the value of the integral in Eq. 6.23
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at any time to be the value of the pressure p(€x) on the hy-
drodynamic hugoniot curve for the same volumetric strain.
The value of T can then be written

T = | %{Tx - p(ex)} [ _3 | (6.24)

and if Y(Ex) is the yield stress in simple tension for an
equivalent work~hardened state,

e B - e p | - ey (6.25)

Equations 6.17 and 6.23 or 6.17 and 6.25 describe
the strain-rate dependent behavior in uniaxial stress for a
given function g(7 ).

ut,

We will now examine in turn the overstress T
and the yield stress O©.

6.2 The Rate-Dependent Overstress

For many engineering purposes the behavior of
metals has been described as rate independent, that is to
say, zf is taken to be zero. This description is also useful
in wave propagation analyses since many features of the be-
havior are not seriously affected if 1? is neglected. Thus,
for example, Bell and his co-workers have been able to show
that the von Karman rate-independent theory of wave propaga-
tion, when used with the appropriate equilibrium stress-
strain relationship, will adequately describe their observa-
tions of the symmetrical impact of rods of annealed aluminumho
copper41 and leadlf2 In uniaxial strain, too, the rate-
independent theory has been found to describe many features
of the behavior.6A However, the rate-independent theory can-
not be reconciled with the well-established model for the
yield process of dislocation propagation and repositioning
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of the atoms in the lattice sites. Plastic flow is not in-
stantaneous. Furthermore, although there is good evidence
that a rate effect may be neglected in some situations,
there is also good evidence that a rate effect can signifi-
cantly influence measurable quantities. The evidence for
the rate effect in metals has been summarized recently by
Johnson, Stein and Davis43 and by Perzyna.4

It is therefore desirable to include a rate-

. dependent overstress in the constitutive relation. However,
it is difficult to decide on the functional form of the rate
function g (Eq. 6.6). The rate-independent theory may be
used to describe most of the wave propagation experiments
which have been performed; experimental evidence for the
form of g is correspondingly slight. The best that can be
done at present is to choose a simple functional form for g
which is consistent with current theories of the physical
processes taking place and then to use experimental results
to put bounds on the values of the coefficients. This has

44,45 uses a formulation of

already. been attempted. Perzyna
visco-plastic behavior essentially the same as that described
above and computes results for a particular experiment of
Campbell and Duby using different rate functions. The com-
parison is inconclusive. At the Los Alamos Scientific
Laboratory, rear surface behavior in plate-impact experiments
has been calculated, again with a formulation essentially the
same as that described above. Only a preliminary account of
the work is available at presentzf6 The results support the
hypothesis of a rate effect but do not enable a quantitative

estimate of the function g to be made with any confidence.

We now develop a simple form for the function g.

The discussion closely parallels that of McQueen and Marsh?
but is written in terms of the formulation of mechanical
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behavior described above.

Consider an element of material for which the total
strain is held constant. Putting € = O in Eq. 6.11 we ob-
tain for such a condition '

P :
26 g(t) —;-1 + r'ij =0 (6.26)
Further, ékk = 0 and therefore T = 0 by Eq. 6.5 so that we
can write

T . '
+1,.=0 (6.27)

—k
2G g(t7) i3

s

Forming the von Mises effective stress, we get
6 g(T)+7T=0 (6.28)

since T will be negative.

Now we make the assumption that ¢ = O so that

.
R

—

T =71 . Certainly if the rate effect is significant the
strain hardening will be small compared with the stress re-
laxation for a given amount of plastic flow. Equation 6.28
can then be rewritten as
=% dt ?*
-7 % —%
dt 2G g(17)

(6.29)

which gives the time required to relax the overstress at

the current rate. This "relaxation time" we will write as

—%
h(t").

To the extent that plastic flow is due to the propa-
gation of dislocations,it is a thermally activated process and
follows Boltzmann's Law. With this tenuous justification we

assume that h may be expressed
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—*, U= ct .
h(t") = H exp {‘—-IﬁT———_r (6.30)
where H is a constant with dimensions of time, U is an activa-
tion energy, c¢ is constant with dimeénsions of volume, k is

Boltzmann's constant and T is the absolute temperature.

We then have
% —% b T .
g(t ) =aT e (6.31)

where a = 1/(2GHe
and b = ¢/kT with dimensions (stress)™'. This is the form

with dimensions (stress - time)~

for g used in Sect. 6.4. The constants a and b cannot be
determined from basic physical constants; their values must
be found empirically. The formula may be expected to tit
experimental data only when the conditions are such that the
plastic flow is predominantly thermally activated.

It may be inferred from the work of Dorn and his

collabora-tors38’47

that at low temperatures (less than

about 200 °K for aluminum) or at high strain rates (above

16° sec”’ for aluminum) g will assume some other form,

more nearly linearly related to stress and temperature. This
hypothesis is supported by the observation that plastic de-
formation by twinning is observed both at low temperatures

and at high strain rates, which shows that the flow mechanisms
are indeed different from those operative under less extreme

conditions.

It is interesting to calculate approximately the
effect of temperature changes on the function g in the form
given by Eq. 6.31. 1In an ordinary tensile test at room tem-
perature when plastic flow is easily observable,the value of
€P is of the order of 107 sec™  and the value of (U — d?*)

must be about 1 eV. The strain rates we are interested in
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are more like 10* sec”>. For this change of rate at the same
temperature, (U — é?*) must be reduced to about 0.6 eV. Let
us say then that the energy to be supplied by thermal fluctu-
ations is 0.6 eV. If this is the case, the strain rate doubles
for a 9 °C rise in temperature from 293 °k to 302 OK, the
overstress being held constant. Alternatively the strain rate
can be maintained while the temperature increases 9 °C if the
value of ¢t is reduced from about 0.40 to about 0.38. The
results of Hauser, Simmons and‘Dorn47 indicate that for
aluminum ,c has a value of the order of 1 eV/kb. The stress
change required to maintain the strain rate is therefore of
the order of 0.02 kb.

We cannot carry this analysis of the temperature
dependence of g very far, since the functional fomof g is
only a conjecture. However, it serves to show how strongly
g is dependent upon temperature when the process is thermally
activated. It suggests, too, that the strain-rate dependent
overstress may be negligible in uniaxial-strain wave propaga-
tion when the plastic flow is thermally activated, because of
the temperature rise through the loading shock wave. For
aluminum,a modest pressure rise of, say, 100 kb is associated
with a temperature rise of about 74 °c.

On the other hand, stress activated processes,
which are not strongly temperature dependent, are important
if, as seems likely, they control the behavior at the higher
strain rates.

6.3 The Yield Condition

We now examine the problem of determining the yield
stress in terms of known measures of the state of the material.

The yield condition can be defined in different ways.
The static yield condition gives the combination of stresses
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at which plastic flow is first observable if the material is
slowly loaded from an elastic condition. The dynamic yield
condition for a material which does not show a strain-rate .
effect gives the combination of stresses required for piastic
flow to take place in plastic wave propagation. These two
yield conditions may differ. For annealed copper for example,
Bell and Werner have shown the static and dynamic stress-strain
curves in uniaxial stress to be significantly differentzf1
Here the dynamic curve is the relationship -between stress and
strain which when used with the von Karman theory of plastic
wave propagation gives results which agree with experiment.

One would expect the static and dynamic yield con-
ditions to be the same. Both can be defined in terms of Eq.
6.2 as the stress g associated with an infinitesimal plastic
strain rate. That they are not coincident, as determined
from static and dynamic experiments, might well be due to
time-dependent processes taking place in tﬁe material at yield
stress levels. 1In the time taken to conduct a static tensile
test there may be, for example, ageing and self-annealing
mechanisms active which in the time of the dynamic experiment
are effectively inoperative. Therefore, if the yield condition
is required for use in wave propagation analysis, it should be
determined from wave-propagation experiments. It is then the
yield condition appropriate for the mechanisms which are opera-

tive in the case being analyzed.

Such a dynamic determination of the yield condition
is not easily made. It may be inferred from the previous dis-
cussion that the Hugoniot yield point is not determinable from
the records of measurable quantities unless the rate function
g is known. The determination of the yield condition for a
particular material calls, therefore, for a carefully designed

program of experimentation and analysis.
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Very few experiments of this kind have been done.
Probably the only series of experiments from which a yield
condition can be deduced with confidence is the work of
Be11%0,41

ditions and to pure, dead-annealed material. The work of

which is confined, however, to uniaxial stress con-

Dorn and his collaborators38 is also thoroughly done and
covers hardened materials but is once again confined to sup-
posedly uniaxial stress conditions. Dorn's results are de-
duced from Hopkinson bar measurements of the behavior of the
ends of the specimens; the analysis assumes that the stress

is in fact uniaxial and that the material behavior can be in-
ferred from average values of the variables over short time in-
tervals. Until a proper axially symmetric two-dimensional
analysis of inelastic wave propagation in rods is available it
will not be possible to decide to what extent the assumptions
made in the analysis invalidate the results. Other work,
similar to that of Dorn et al., has been done by Ripperger
and others at the University of Texaslf8 They have attempted
to account for both the strain-rate effect and the radial

stresses in their analysis but the results are not conclusive.

Although experiments on wires or rods are in many
ways attractive, they suffer from the serious disadvantage that
the stress is not in fact uniaxial. Without careful analysis
of the complete two-dimensional wave system, which the experi-
ment was originally designed to avoid, it is not possible to
isolate the effects of various secondary features of the be-
havior, such as strain-rate effects, nonplanar wave fronts
and radial motion. This criticism does not apply to plate ex-~
periments where the wave propagation is in uniaxial strain.
However, they are not easily carried out and very little use
has been made of plate impact or other longitudinal plane
wave experiments to investigate yield behavior. Both Fowles,

who sacrificed the simplicity of a purely uniaxial geometry in
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order to observe the behavior on a wédge surface, and Lundergan50
have determined the Hugoniot elastic limit for a particular
aluminum alloy at room temperature. No other conclusive de-
termination of the dynamic yield condition for a metal in uni-
axial strain has been published.

Information on the yield condition from the theo-
retical point of view is also sparse. There is no lack of ‘
theories to describe details of the behavior but it is not pos-
sible at present to put together a quantitative description of
the yield condition. 1If the yield condition is to be in the
form of a "mechanical equation of state," g = f(§,T), where T
is the temperature, then it must follow that the structure of
the material is preserved in the plastic flow. This is known
not to be so. The structure of the material is changed by de-
formation and the functional dependence of the yield stress on
strain and temperature changes with it. If the structure of
the material could be described by a number of parameters
Sy, Sz - - - Sh then it should be possible in theory to write
g = f(S1, S2 + - - Sy T) as the yield condition. Two par-
ameters of this kind which have been used are the total strain
€, and the total plastic work,but the reason for their choice
appears to be mathematical convenience rather than physical
realism. It can be shown experimentally that the yield condi-
tion depends upon at least two independent structural par-
ameters.51 In fact one might expect more, for there can be
several mechanisms contributing to the hardening, and each be-
haves in its own way with changing temperature and changing
plastic strain, depending on the annealing, diffusion and other

processes taking-place.

The yield condition, and its dependence on the state
of the material therefore is not known and it is not possible
to formulate a hypothetical yield condition in such a way that

H
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the complex dependence on all of the previously-mentioned
factors is included in a physically realistic way.

The problem remains of what value to give to g in
a wave propagation analysis. It is evidently necessary to
make some arbitrary assumptions, and the most convenient as-
sumption is that, for a von Mises yield condition, ¢ is a
material constant. Although the functional dependence of T
on the state variables is not known, this elastic-plastic
assumption can be improved. For example, the strain hardening
may be included by taking the value of T from a tensile test
at a strain which represents an equivalent amount of total
plastic work.49 Again, it is an improvement over ignoring
the temperature effect to assume that the value of ¢ de-
creases to zero at the melting point.

Whether or not such arbitrary phenomenological
descriptions of the behavior are adequate for engineering pur-
poses depends not so much on their physical exactness as on
the effect of their inexactness on the quantities of interest
in a particular configuration. If modifications to the yield
behavior have only a very small effect on quantities of in-
terest for a certain class of engineering problems, then for
the analysis of this class of problems the yield behavior may
be prescribed only approximately. In the next section we in-
vestigate the effect of some simple descriptions of yield be-
havior for a particular example of wave propagation in uni-

axial strain.

6.4 Calculations of Wave Propagation in Uniaxial Strain

The discussions of the two preceding sections can
be put into perspective by considering some special cases,
and calculating the effect on observable quantities of changes
in the yield behavior. We have chosen to calculate the be-
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havior of an impacted aluminum plate at two different impact
velocities, for various modifications of the simple elastic-
plastic behavior.

There are of course a great many configurations and
different materials for which the observable behavior might
usefully be calculated. A complete appreciation of the rela-
tive importance of the modifications to the yield behavior
will not be obtained from calculations of only one configura-
tion. The work of this section should therefore be regarded
as only a beginning to a proper investigation.

Calculitions are made for the configuration shown
diagramatically in figure 6.1 for two different velocities of
the projectile, called Cases A (velocity v) and B (velocity
3v). The calculations have been made using Wave II, a one-
dimensional code for wave propagation in a solid with an ar-
bitrary constitutive equation, which is described in a re-
port by Herrmann and Mack.52 Its accuracy, especially for
the strain-rate case, is demonstrated in the report. Four
different types of yield behavior are considered. Elastic-
plastic with a constant yield point, that is to say perfectly
plastic; (Cases Al, Bl) elastic-plastic with a pressure-
dependent yield point (Cases A2, B2); elastic-plastic with
strain hardening (Cases A3, B3); elastic-plastic with a
strain-rate effect (Cases A4.1, A4.2, B4.1, B4.2).

The constitutive equations chosen for calculation
are nominally for aluminum. The basic elastic-plastic be-
havior is taken to follow the Wood theory with the Murnaghan
expression for the hydrodynamic Hugoniot, the constants being
taken from static data,whichhave been shown to give good re-
sults for initial loading in the case of 6061-T6 alloy? The
modifications to this elastic-plastic behavior are arbitrary,
however, and are not intended to represent the behavior of any
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particular real material. The actual constitutive relations
chosen for the different cases are now described.

Case 1. The elastic-plastic behavior is intended
as an approximation to the behavior of 6061-T6 aluminum, and
is taken as follows:

~ 1067.4 kb

Elastic dt/dv =
Plastic loading T =p+ 1.84 kb
Plastic unloading T=p—-1.84 kb

where p = 169.38 (v™**** — 1) kb
T is the axial stress
vV is the ratio Py/P

P is the density and P, its initial value
p is the hydrodynamic hugoniot pressure for
the density r.

Case 2. Under ordinary engineering conditions it is
well established that the effect of hydrostatic pressure on
the yield behavior is very small indeed. It is usually pre-
sumed that the same is true for dynamic behavior in uniaxial
strain. This may be so, but it is nevertheless of interest
to see what would be the effect on observable quantities of
a pressure~dependence of the yield point. Calculations of Case
2 are intended to show this. The pressure dependence assumed
is that the value of Y, the uniaxial yield stress, (which is
2.76 kb in the initial state) is increased by 0.03 kb for
every 1 kb rise in dilatational stress, or mean pressure.

The only change, then, from the equations of Case 1 is as fol-

lows:
Plastic loading T =1,02p + 1.84 kb
Plastic unloading T = 0.98p — 1.84 kb
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Case 3. 1t is argued in Sect. 6.3 that it is not
possible to describe the strain hardening of a metal with a
single parameter. However, the effects of strain hardening
may be judged (since they prove to be small) by taking the
hardening, or increase in the yield stress, to be a function
of the total plastic work. We have in this case arbitrarily
assumed the increase in the value of Y to be proportional to
the total plastic work per unit volume Wp.

The formulation of the constitutive relations fol-

lows the theory set out by Fowles[.‘9 We write
_ 2 _ 1
dwp =7 Y(dex Ve dy)

and

dy = ndw
¥

where €X is the axial strain and G is the shear modulus. The

following constitutive equations result.

Plastic loading T=p+ 2/3Y

Plastic unloading T=p—2/3Y

where in the finite difference formulation Y is calculated
thus:

If a mesh point is elastic at time nit, Yn+1 =Y

If a mesh point is plastic and loading at time nAt,

)

n, n+l
Yn+1 =Y+ 2Y (e - €
3 (€n+1 _é_ Yn

If a mesh point is plastic and unloading at time nAt,

- M +
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3 _ (. 41 31 1l.n
5 (e € )+GY
We took
Y° = 2.86 kb
G = 249.2 kb
n = 10.0

The stress-strain curve in simple tension for this

hardening law is shown in figure 6.2.

Cases 4.1, 4.2. The way in which a strain-rate ef-

fect can be included in the constitutive equations is de-
scribed in Sect. 6.1. For reasons set out in Sect. 6.2, we
chose a strain-rate function as follows:

g = a T exp (b ?*)

where ™ is the von Mises effective overstress. It is not

possible from data presently available to put values on the
constants a and b for aluminum. We expected, however, that
a value for g of the right order of magnitude would be ob-

tained by taking a = 10® kb~ sec ® and b = 5.0 kb~*.

Unfortunately we have not yet been able to run a
calculation satisfactorily with these values for a and b, as
they lead to stress relaxation rates which cannot be assumed
constant during the smallest time increment for the calcula-
tion which can reasonably be used. Until the machine program
has been modified to take care of this, only values for g
that give relaxation rates which are reasonably constant in
the time increment used for calculation can be accommodated.
We have run calculations for two different strain-rate func-
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tions, which satisfy this requirement.

In Case 4.1 we took a = 100 kb * sec”*
b = 0.5 kb~ *
In Case 4.2 we took a = 300 kb™* sec™*

b =1.5 kb™*

—%
The overstress T 1is calculated thus:

3 —3%

If Y3 (v-op), T =3 (t-p) -y

2
If—YS%(T—p)SY, -’F*=O

3

2

%

If (t—p)<—Y, 7 (t—p) +Y

N|w

It should be emphasized that these cases are not
intended to represent the behavior of a real material. We
can, however, expect the behavior of aluminum to lie between
Case 4.2 and the strain-rate independent Case 1.

For all cases, the fracture stress was set at
— 10.0 kb. As will be seen from the results, Case B fractured
and Case A did not, except for Case A4.l1. Also, in all cases
an artificial viscosity was introduced to ensure stability and
smoothness for the finite-diffe:ence machine calculation de-

52 The values used for the co-

scribed in the Wave II report.
efficients described therein were A; = 2.0, B; = 0.125, Az = O,

B2 = O.‘

From the machine output, three quantities have been
plotted against time; the interface stress, the rear surface

position, and the rear surface velocity. Representative re-
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sults are displayed in figures 6.3 fhrough 6.9. It may be of
help in the interpretation of these figures to refer to the
characteristic diagram figure 6.10. This Lagrangian charac-
teristic mesh in the x — t plane shows the wave fronts for
Case A and a linearized elastic-plastic behavior.6

The conclusion to be drawn from a study of the re-
sults of the calculations is that none of the measurable quanti-
ties, impact face stress or rear surface velocity or position,
differ sufficiently in the different cases to provide a measure

of the effects on yielding which we are considering.

A preliminary comparison is possible with data pro-
vided by C. D. Lundergan53 of Sandia Corporation. The measured
rear -surface displacement vs. time is plotﬁed in figure 6.11 where
it is compared with the calculation for Case Al. It may also
be compared with figure 6.3 and 6.4. It is clear that an experi-
ment of this type is not suitable to resolve between the be-
havior assumed for Cases Al, A2, A3, A4.1 or A4.2.

From the information in this section, it may be con-
cluded that the values of yield stress and rate-dependent over-
stress may be determined only very approximately from uniaxial
strain experiments, which provide sufficiently simple boundary
conditions to permit solutions to be obtained. In one respect
this is encouraging, for it means that the behavior can be ade-
quately described by a simple rate independent elastic-plastic
constitutive relation for cases of uniaxial strain at low
stresses. On the other hand, the rate independent description
is expected to be inadequate on physical grounds. For other
configurations, the simple rate-independent theory may be inade-
quate, but solution methods must be developed for other configu-
rations before they can be investigated.

72



‘pozd1eue sem Yoiym Judwtiadxa .
uumaEﬂoumammzuwoCOMumucuwmuamuUﬂumEEmumeQ.H.omuswﬂh

25/ut 0l X€88Vi=A 8 ISYD
2¥s/Ut OLX 196V = A ¥ 3ISY)D

M3IA ON3
Y/l LLLLLLE L LY

\.NA e fat— . @\n —
-——
A
\<
777777777

¥39Y G3LIN3WNYLSNI \\\\\\\\

1399v1 371103r04d

S

73



‘¢ 9se) jO 10YAeyadq 3urusdpiey-uleiIs 2Yyj 103
uojsudl a7dwIs u} UOFILTII UTRIIS-SBA1I8 YL °Z7°9 2an314g

-0l X NIVYIS
sz 02 St ot S

! J i T I

‘A% NOISN3IL

74



‘Y. pue 2y ‘Iv sase) 1oy judwaseldsiIp 9oeyans Iedy

€9 2and1yg

L1IVdN!

1 4

¥314v 3INWIL

dash
A 9 S
T 1 T
€V 3SVY2 O
2v 35SVl Vv

ly 3SvJ) —

T

0!

Sl

(¢}

IN3IA33VY1 4510 3Iv3Hns ¥vY3Y

(.0 X su

75



“Z°'HY pue [°Hy ‘IV S95e; 103 JuswadeTdSTp doBFINS IBIY “H°'9 3In3Tg

2sr 1IVdWI 8314V 3WIL

8 L ] S 14 £ 4 l 0
T T 1 T~ T T T 0
‘poedwi Jaye st £9.¢
} peinjoesy [py 9Se)
- s
2vy 3Svy ©
L-py 3ISYI ¢
ly 3Svy —
- Ol
—H S|
-4 o2

INIW3IV1dSI0 3DV4¥Ns ¥V
76

0l X sul

£-



0-L

‘€Y PUB Zy ‘1V S9se) I0J LJTO0T9A 30BFANS IEdY °G'9 2aIn3Tg

33s  13WdW! H3L4Y 3INIL
S-9 09 S-S 0-S S

0-¢

K T 1 _

A¥C3HL 2J1LSY1d
-J1LSYI3 03ISI¥YINIT---
£V 3sVd ©
2v ISVl g
lY 3sv)—

ALlI3073A 374112370 ¥d

—_——— — — — -

4||L

ALlI2073A 3JV4H¥NS HY3Y

dasw/sut

77



*Z°%V PUB 1°'Hy ‘1Y s@se) I10J LJTO0T3A 20eJINS 19y ‘g9 aan31g

3357 [JVdWi 8314V IWIL

0L S9 09 S5 0-S ot s-2 02
T T T T 7 T =T

‘UMoys j0u

Joiaeyaq Juanbasgng

Pedwi Jayje ‘uumlmw.m
PaIngoRly |-py Ise)

ALIJOT3A 3NMUIIAMOU— — — - = =3 fF——o—=——="-_-

ALID073A 3JViY¥NS YV 3
78

Jasw /syl




‘cd pue zd ‘19 S9se) 103 £3T0079A 2oBIINS IBDY /9 2an3T4

585 1JVdW' Y314V 3WIL
= 09 S s 0% sz oz

T T T 1 A f 0

29sM £ € 1P paInyIeI ISIL] €8 3SY3 °
73S GE € 1P patrioery 1Sy 28 ISy ¥
23S /p € 1P PRINIIPIY 1511y g 3SyI)——

T113073A 30V4HNS HY3IY

Sw/ sul

Dasw

79



*Z'hd pue T'Hg ‘14 S9SeD 10J LIT00T94a DOBJANS IvIY

JasT 1 IJVdW! ¥314¥ IWIL
0¢

"8'9 2an3tg

S¢S oS SS 0s §e 0¢
T T . — vaml T T o
4
-1 S
)
28 ~
ive
335M /g € j° pPAINPRIY IS 2 HE ISV n
235y /G € P paunjoely jssy L€ 3SYD
J8sn /B € B PaIMDRY) 511 18 35SV B
- 0l
St

X10073A 30v44ns dv3y

sasw/su)

80



30

25 1
B4
- B42
. 20 : TN
LJ
.}
x
wl
w
o
@«
S115
w
o
<«
u
@
L
A N
z 24
10 _1/7
A;

A2, A3, A4-2 closely
follow Al

0 L |
0 1 2
TIME AFTER IMPACT psec

Figure 6.9. Impact face stress for all Cases A and B.

81



DRIVER TARGET

F S wn o
T T T T T —

T

w
T

T

o
4

0 1 i
0 0s 1-0 1-5 2:0

DISTANCE c¢m
Figure 6.10. Lagrangian characteristic diagram showing
the elastic and plastic wave fronts for
Case A and linearized elastic-plastic be-
havior.

82



€S

‘ -1V @se) pa3jeTnoTe> Y3tm paxedwod
ue3aspun g °3 £q poAlasgo Yy 9se) Jo JudwadeldsIp ddvFaANS IBIY

2as7 [JvdW! ¥314Y 3IWIL

*11°9 @an3Ty

g L 9 5 0
T T T T — 0
Hs
x
™
Iy 3s¥) © =t
INIWINIdXT — ”
c
o)
H o2
(@]
m
o
&
©
[
>
(@]
- Slim
K<
m
z
—
-
wn
. »
Hozlz

83



REFERENCES

Rice, M. H., McQueen, R. G., and Walsh, J.M. '"Compres-
sion of Solids by Strong Shoclt Waves.'" Solid State
Physics, Editors: Seitz and Turmbull, Vol. 6, pp 1-63,
1958.

Brode, H. Dynamic Properties of Matter under High

Stress. Thermodynamic Description. Symposium on

Structural Dynamics under High Impulsive Loading,
Dayton, Ohio. September 1962 (to be published).

Prager, W. Introduction to Mechanics of Continua.

Ginn and Company, Boston, 1961.

Courant, R. and Friedrichs, K. O. Supersonic Flow and

Shock Waves. Interscience Publishers, Inc., New York,
1948.

von Karman, T. On the Propagation of Plastic Deforma-

tion in Solids. Office of Scientific Research and
Development, OSRD 365, 1942.

Herrmann, W., Witmer, E. A., Percy, J. H., and Jones,
A. H. Stress Wave Propagation and Spallation in Uni-
axial Strain. ASD Report TDR 62-399(1962). Contract
No. AF 33(616)-6373.

Rich, J. C. ed. AFSWC Second Hydrodynamic Conference.
Numerical Methods of Fluid Flow Problems. AFSWC-TN-61-
29, Part 1, May 1961.

Richtmyer, R. D. Difference Methods for Initial-Value

Problems. Interscience Publishers, Inc., New York 1957.

85



10.

11.

12.

13.

14.

15.

16.

17.

REFERENCES Continued

Harlow, F. H. and Meixner, B. D. The Particle and

Force Computing Method for Fluid Dynamics. Los Alamos
Scientific Laboratory, LAMS-2567, October 1961.

Kolsky, H. G. The Nearest Neighbor Hydrodynamic Calcu-

lation. Los Alamos Scientific Laboratory, Report LASL
T-S, July 1, 1961.

Amurud, L. and Orr, S. R. A Note on Inverted Centers

of Pressure and Crossed Mass Points in a Two-Dimensional

Hydrodynamic Calculation. Los Alamos Scientific
Laboratory, May 26, 1958.

Truesdell, C. and Toupin, R. A. '"The Classical Field
Theories." Encyclopedia of Physics, Edited by S. Flugge,
Vol. 3/1, p. 226-793, 1960.

Freudenthal, A. M. and Geringer, H. "The Mathematical
Theories of the Inelastic Continuum.'" Encyclopedia of
Physics, Edited by S. Flugge, Vol. 6, p 229-433, 1958.

DeGroot, S. R. and Mazur, P. Non-Equilibrium Thermo-

dynamics. North Holland Publishing Co. Amsterdam, 1962.

Ziegler, H. "An Attempt to Generalize Onsager's Principle
and its Significance to Rheological Problems." Z.A.M.P.

Vol. 9b, 1958, p 748-763.

Eckart, Carl. The Thermodynamics of Irreversible

Processes IV The Theory of Elasticity and Anelasticity.
Phys. Rev. 73 373 (1948).

Vakulenko, A. A. '"The Connection between Stresses and
Strains in Inelastic Media.'" Soviet Physics Doklady,
Vol. 3, 1958, pp. 193-196.

86



18,

19.

20.

21.

22.

23.

24,

25.

26.

REFERENCES Continued

Vakulenko, A. A. "A Thermodynamic Invéstigation into the
Relation between Stress and Deformation in Isotropic
Elastoplastic Media.' Soviet Physics Doklady, Vol. 4,
1959, pp. 697-700.

Backman, M. E. Plasticity and Non-linear Elastic Strains.
NAVWEPS Report 7648, NOTS TP 2665, 27 April 1961.

Murnaghan, F. D. Finite Deformation of an Elastic Solid.
J. Wiley and Sons, Inc., New York, 1951.

Birch, F. '"The Effect of Pressure upon the Elastic
Parameters of Isotropic Solids, According to Murnaghan's
Theory of Finite Strain." J. of Applied Physiecs, Vol. 9,
1938, p. 279-288. '

Toupin, R. A. and Bernstein, B. ''Sound Waves in Deformed
Perfectly Elastic Materials; the Acoustoelastic Effect."
J. Acoust. Soc. Amer., Vol. 33, 1961, pp. 216-225.

Hayes, M. and Rivlin, R. S."Propagation of a Plane
Wave in an Isotropic Elastic Material Subject to Pure
Arch Rational Mech. Anal.,

Homogeneous Deformation."

Vol. 8, 1961, pp. 15-22.

Huntington, H. B. "The Elastic Constants of Crystals."
Solid State Physics; Editors Seitz and Turnbull;
Vol. 7, pp. 213-351, 1958.

Hearmon, R. F. S. ''The Elastic Constants of Anisotropic
Materials II." Adv. in Physics, Vol. 5, 1956, pp. 323-382.

Lazarus, D. ''The Variation of the Adiabatic Elastic
Constants of KCZ, NaCf, CuZn, Cu, and Al with Pressure
to 10,000 Bars." Phys. Rev., Vol. 76, 1949, pp. 545-553.

387



27.

28.

29.

30.

31.

32.

33.

34.

REFERENCES Cont:inued

Daniels, W. B. and Smith, C. 5. ‘''Pressure Derivatives
of the Elastic Constants of Copper, Silver and Gold

to 10,000 Bars.'" Physical Review, Vol. 111, 1958,

pp. 713-721.

Hughes, D. S. and Maurette, C. '"Dynamic Elastic Moduli
of Iron, Aluminum, and Fuzed Quartz." J. of Applied
Physics, Vol. 27, 1956, pp. 1184-1136.

Corll, J. A. 'Pressure Derivatives of the Elastic
Constants of Cadmium.' Case Institute of Technology,
ONR Technical Report No. 6, June 1962.

Hughes, D. S. and Kelly, J. L. 'Second-Order Elastic

Deformation of Solids. Physical Review, Vol. 92,

1953, pp. 1145-1149.

McQueen, R. G. and Marsh, S. P. One-Dimensional

Compression Waves in Isotropic Solids. Los Alamos

Scientific Laboratory. Unpublished report, 1961.

Altshuler, L. V., Kormer, S. B., Bakanova, A. A., and
Trunin, R. F. "Equation of State of Aluminum, Copper
and Lead in the High Pressure Region.'" Soviet Physics.
JETP Vol. 11, p. 573, 1960.

Bridgman, P. W. ''Linear Compression to 30,000 Kg/cm2
Including Relatively Incompressible Substances.' Pro-
ceeding of the American Academy of Arts and Sciences,
Vol. 77, p. 187, 1948.

Truesdell, C. '"General and Exact Theory of Waves in
Finite Elastic Strain." Arch. Rational Mech. Anal.,
Vol. 8, pp. 264-296, 1961.

88



35.

36.

37.

38.

39.

40.

41.

42,

Altshuler, L. V., Kormer, S. B., Brazhnik, M. I.,
Vladimirox, L. A., Speranskaya, M. P., and Funtikov,
A. I. "The Isentropic Compressibility of Aluminum,
Copper, Lead, and Iron at High Pressures.' Soviet
Physics, JETP, Vol. 11, No. 4, pp. 766-775, October
1960.

Malvern, L. E. '"Plastic Wave Propagation in a Bar of
Material Exhibiting a Strain-Rate Effect.'" Q. App.
Math., Vol. 8, 1950-51, p. 405-.

Hill, R. The Mathematical Theory of Plasticity.
Oxford University Press, 1950.

Dorn, J. E. and Hauser, F. Dislocation Concepts of

Strain-Rate Effects. Symposium on Structural Dynamics

under High Impulsive Loading, Dayton, Ohio. September
1962 (to be published).

Wood, D. S. '"On Longitudinal Plane Waves of Elastic-
Plastic Strain in Solids." J. App. Mech., Vol. 19,
1952, pp. 521-525.

Bell, J. F. 'Propagation of Large Amplitude Waves in
Annealed Aluminum.'" J. of Applied Physics, Vol. 31,
1960, pp. 277-232.

Bell, J. F. and Werner, W. M. ''Applicability of the
Taylor Theory of the Polycrystalline Aggregate to
Finite Amplitude Wave Propagation in Annealed Copper.'
J. of Applied Physics, Vol. 33, 1962, pp. 2416-2425.

Sperrazza, J. Propagation of Large Amplitude Waves

in Pure Lead. Proceedings Fourth U.S. National

Congress of Applied Mechanics, Berkeley, California,
June 1962 (to be published).

89



43.

44,

45.

46.

47.

48.

49.

REFERENCES Continued

Johnson, P. C., Stein, B. A., and Davié, R. S.
Basic Parameters of Metal Behavior under High Rate

Forming. Arthur D. Little, Inc. Report to Watertown
Arsenal Laboratories. WAL~TR-11.2/20, 1961.

Perzyna, P. The Study of the Dynamic Behavior of Rate |

Sensitive Plastic Materials. Brown University, Report
to Office of Naval Research NR-064-406. Tech. Rept.
No. 77, 1962

Perzyna, P. The Constitutive Equations for Rate

Sensitive Plastic Materials. Brown University, Report
to Office of Naval Research. NR-064-406. Tech. Rept.
No. 76, 1962.

McQueen, R. G. and Marsh, S. P. One-Dimensional

Compression Waves in Isotropic Solids. Los Alamos

Scientific Laboratory (unpublished report, 1961).

Hauser, F. E., Simmons, J. A., and Dorn, J. E.
Strain Rate Effects in Plastic Wave Propagation.

Materials Research Laboratory, University of California,
Berkeley, Technical Report, 1960,

Tapley, B. D. Stress-Strain Characteristics of Materials

at High Strain Rates. Part VI. The Propagation of

Plastic Waves in Finite Cylinders of Strain-Rate-

Dependent Material. University of Texas, Report to

the Sandia Corporation, 1960.

Fowles, G. R. Shock Wave Compression of Hardened and
Annealed 2024 Aluminum. AFOSR No. 117, Stanford Re-
search Institute, 1960.

90



50.

51.

52.

53.

REFERENCES Conc luded

Lundergan, C. D. The Hugoniot Equation of State of

6061-T6 Aluminum at Low Pressures. Sandia Corporation,
Albuquerque, New Mexico, Report No. SC-4637(RR), 1961.

Dorn, J. E., Goldberg, A., and Tietz, T. E. 'The Effect
of Thermal-Mechanical History on the Strain Hardening

of Metals." Trans. Amer. Inst. Min. Metall. Engineers,
(Institute of Metals), Vol. 180, 1949, pp. 205-224.

Herrmann, W. and Mack, E. Wave II Fortran Program for

the CalculationAof One-Dimensional Wave Propagation.

Massachusetts Institute of Technology, Aeroelastic and
Structures Research Laboratory Report, ASRL-1005,
Dec. 1962. :

Lundergan, C. D. Private Communication.

91



TDR-63-12

P S e

e i

=

DISTRIBUTION

HEADQUARTERS USAF

Hq USAF (AFRDP), Wash 25, DC '
Hq USAF (AFORQ), Wash 25, DC
Hq USAF (AFRST), Wash 25, DC
Hq USAF (AFTAC), Wash 25, DC
AFOAR, Bldg T-D, Wash 25, DC

(RRONN)

(RROSA, Col Boreske)

{RROSP, Lt Col Atkinson)
AFOSR, Bldg T-D, Wash 25, DC
ARL, Wright-Patterson AFB, Ohio

{RRLO)

(ARO, Mr, Cady)

MAJOR AIR COMMANDS
AFSC, Andrews AFB, Wash 25, DC
(sCcT)
(sCT-2)
{SCLAS, Col P, F. English)
SAC, Offutt AFB, Nebr
{OA, Dr, E, A, Jackson)
(OAWS, Mr. England)
AUL, M axwell AFB, Ala
USAFIT (USAF Institute of Technology}, Wright-Patterson AFB, Ohio

AFSC ORGANIZATIONS

ASD, Wright-Patterson AFB, Ohio

{(ASAPRL)

(ASRMDS-1, Mr, Janik)
BSD, Norton AFB, Calif

(Tech Library)

(BSR)

(BSRD, Lt Col Caseria)

92



TDR-62-12

DISTRIBUTION (cont'd)

No, cys
1 (BSRVE, Lt Col Parker)
1 (BSLA)
1 (BSTD)
1 (BSAT)
2 SSD {SSSC-TDC) AF Unit Post Office, Los Angeles 45, Calif

ESD, Hanscom Field, Bedford, Mass

2 (ESAT)
1 (ESDL, Col R, J, Lynch)
1 (ESDS, Col W. H, Congdon)
1 AF Msl Dev Cen (RRRT), Holloman AFB, NM
1 AFFTC (FTFT), Edwards AFB, Calif
1 AFMTC (MU-135), Patrick AFB, Fla
1 APGC (PGAPI), Eglin AFB, Fla
1 RADC (Document Library), Griffiss AFB, NY
KIRTLAND AFB ORGANIZATIONS
AFSWC, Kirtland AFB, NM
1 (SWEH)
25 {SWOI)
2 (SWRPA)
1 (SWRPL)
1 (SWRPT)
1 (SWRA)
1 ADC (ADSWO), Special Weapons Office, Kirtland AFB, NM
1 ATC Res Rep (SWN), AFSWC, Kirtland AFB, NM
1 AFLC, Albuquerque Ln Ofc (MCSWR), AFSWC, Kirtland AFB, NM
1 SAC Res Rep (SWL), AFSWC, Kirtland AFB, NM
1 TAC Liaison Office (TACLO-W), AFSWC, Kirtland AFB, NM
1 US Naval Weapons Evaluation Facility (NWEF) {(Code 404),

Kirtland AFB, NM

93



TDR-63-12

DISTRIBUTION (cont'd)
No, _cys

OTHER AIR FORCE AGENCIES

Director, USAF Project RAND, via: Air Force Liaison Office,
The RAND Corporation, 1700 Main Street, Santa Monica, Calif

1 (RAND Library)

1 (Dr. Olen Nance)

1 (Mr, Jack Whitener)

1 Aerospace Defense Systems (ADO) ATTN: ADSO, AF Unit Post
Office, Los Angeles 45, Calif

ARMY ACTIVITIES

1 Chief of Research and Development, Department of the Army,
(Special Weapons and Air Defense Division, ATTN: Maj Baker),
Wash 25, DC

1 US Army Materiel Command, Harry Diamond Laboratories
(ORDTL 06,33, Technical Library), Wash 25, DC

1 Commanding Officer, US Army Office of Special Weapons
Development (USACDC), Ft Bliss, Tex

1 ARGMA Liaison Office, Bell Telephone Labs, Whippany, NJ

1 Redstone Scientific Information Center, US Army Missile Command
{Tech Library), Redstone Arsenal, Ala
Director, Ballistic Research L.aboratories, Aberdeen Proving
Ground, Md

1 (Mr, Ed Bailey)

1 {Dr. Coy Glass)
Commanding Officer, Picatinny Arsenal, Samuel Feltman
Ammunition Laboratories, Dover, NJ

1 {SMVPA-VA6)

1 {(Mr, Murray Weinstein)

1 Research Analysis Corp., (Document Control Office), 6935
Arlington Road, Bethesda, Md., Wash 14, DC

1 US Army Office of Ordnance Research, Physical Sciences Div.,
Box CM, Duke Station, Durham, NC.

1 Director, Army Research Office, Arlington Hall Sta, Arlington, Va

1 Commanding Officer, US Army Engineers, Research & Development

Laboratories, It Belvoir, Va



TDR-63-12

DISTRIBUTION (cont'd)

No, cys
NAVY ACTIVITIES

1 Chief of Naval Operations, Department of the Navy (OP-36),
Wash 25, DC

1 Chief of Naval Research, Department of the Navy, ATTN: Mr,
James Winchester, Wash 25, DC

1 Commanding Officer, Naval Research Laboratory, Wash 25, DC

1 Chief, Bureau of Naval Weapons, Department of the Navy, Wash
25, DC

1 Commander, Naval Ordnance Laboratory, White Oak, Silver
Spring, Md .

2 Director, Special Projects,- Department of the Navy, ATTN: Mr,
Don Williams, Wash 25, DC

OTHER DOD ACTIVITIES

Chief, Defense Atomic Support Agency, Wash 25, DC

2 (Document Library)

1 (DASARA, Lt Col Singer)

5 Director, Weapon Systems Evaluation Group, Room 2E1006,
The Pentagon, Wash 25, DC

1 Director, Advanced Research Projects Agency, Department of
Defense, ATTN: Col Innes, The Pentagon, Wash 25, DC

1 Director, Defense Research & Engineering, ATTN: Col Gilbert,
The Pentagon, Wash 25, DC

20 ASTIA (TIPDR), Arlington Hall Sta, Arlington 12, Va

1 DASA Data Ctr, TEMPO-General Electric Company, P.O,

Drawer QQ, Santa Barbara, Calif
AEC ACTIVITIES

1 US Atomic Energy Commission (Headquarters Library), Wash 25, DC
Sandia Corporation, Sandia Base, NM

2 {Technical Library)

(C. D. Lundergan (Org. 7161-2))

Sandia Corporation (Technical Library), P.O, Box 969, Livermore,
Calif

1 Chief, Division of Technical Information Extension, US Atomic

Energy Commission, Box 62, Oak Ridge, Tenn

95



TDR-63-12

DISTRIBUTION (cont'd)

University of California Llawrence Radiation Laboratory (Technical
Information Division), P. O, Box 808, Livermore, Calif

University of California Lawrence Radiation Laboratory, ATTN:
Mark Wilkins, Berkeley 4, Calif

Director, Los Alamos Scientific Laboratory (Helen Redman, Report
Library), P.O. Box 1663, Los Alamos, NM

Brookhaven National Laboratory, Upton, Long Island, NY
Argonne National Laboratory {Tech Library), Argonne, Il
Oak Ridge National Laboratory (Tech Library), Oak Ridge, Tenn

OTHER

Institute for Defense Analysis, Room 2B257, The Pentagon, Wash
25, DC

Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio

Institute of the Aerospace Sciences, Inc,, 2 East 64th Street, New
York 21, NY

Aeronutronic, Division of Ford Motor Co., ATTN Drs, Montgomery
Johnson and R, G. Allen, Newport Beach, Calif

E., H., Plesset Assoc,, Inc,, ATTN: Dr, Harris Mayer, 1281
Westwood Blvd,, Los Angeles 24, Calif

University of Rochester, ATTN: Dr, Harold Stewart, Security
Officer, Rochester 20, NY

Stanford Research Institute, ATTN: Drs, Duvall and Fowles, Menlo
Park, Calif :

General Electric Aero Sciences Lab, ATTN: Dr, Stag, 3198
Chestnut Street, Philadelphia, Pa ‘

AVCO Corp, Research & Advanced Dev, Div,, 201 Lowell Street,
Wilmington, Mass

(Dr. W. L, Bade)
{Dr. Dean Morgan)

Aerojet-General Corp,, ATTN: Mr, Kreyenhagen, 1711 S. Woodruff
Avenue, Downey, Calif

The Boeing Co., Aerospace Division, ATTN: Dr. Glenn Keister,
Seattle 14, Wash

Lockheed Missile & Space Company, ATTN: Mr. Milton McGuire,
Sunnyvale, Calif

Southwest Research Institute, ATTN: Dr, G, Nevill, 8500 Culebra
Road, San Antonio 6, Tex

96



TDR-63-12

— jem = b e

DISTRIBUTION (cont'd)

Technical Operations, Inc,, ATTN: Dr, Kofsky, Burlington, Mass

Kaman Aircraft Corp., Nuclear Division, ATTN: Dr, A, P, Bridges,
Colorado Springs, Colo

Space Technology Labs, ATTN: Dr. Herman Leon & Mr, Jackson
Maxey, P. O, Box 95001, Los Angeles 45, Calif

Aerospace Corporation, Los Angeles, Calif
{Dr. Domenic Bitondo)
(Dr. George Welch)
(Dr. Robert Cooper)
(Mr., H. C. Sullivan
(Dr. W. Loh)
{(Dr. G. A. R, Graham)

General Electric, Defense Systems, ATTN: Mr, A, Sinisgalli,
Atlantic Building, Syracuse, NY

General Electric Company, MSD, ATTN: Mr, J, Spencer, 3198
Chestnut Street, Fhiladelphia 4, Pa

Official Record Copy (SWRPA)

97



TOTIDITTOD VILSY Ul
T-90T Y& TISV LI
oy 23y Lrisproosg

Loxag .

ey ‘ssmopf T TwOIIY
fTTBOLIISE JI31TBM

*qeT

GOIB9SIY SSINONING
TR OTISYTE-0I3Y
aSpTaawsy ¢ yoax

&0 °3SUY 3139SNYgOBSsSET]
TO%%

-(TC5)E2 AV 2PBIjuO)
To9Lls sser

‘311G 20alfoxg oIy
3s8Tq JO s2033F°

=~ STBTI2ed TBINJONILG
TIBIIS PUB $S9I1G
183TL

JO 209779 -~ STBISH
SOTABIaUTY

£270T98°H

BurpenT 3sWIE

‘TeTamagod fSxeus ureias otdoxqusst UB USMOIUY

SUTBIYS OTJSBTO 01 DOJBTIL oIV S9s5axas ‘Lrosyuy

UBYTNSST SGY WL *POOSTISU ST #0TT °TasweTd
05 snp uoTyonpoxd LdolqUs GOTUM UT DPSISPTSUACD

ST toTaemTxoIdds Uy PaYBTNULIOY ATTX030BISTASS

ussq 40U SUY UOTUM ‘quswywoxy OTmEuLponIsyl

TT0F B saltnbax USusx3s [RIILLIET JO GOTSTTOUT

*q28Tax}s TRTISNEN JO 193375 ay3 ITTpurout

‘gpeOT 2ATSTAAEUT L2FSUa3TT UBTU 01 SOTPOA PTIOS
0 ssuodsax oU3 BUTGTIOSSP I0F LI0STY ¥ IO JUST
-GOToASD 242 SUISSNOSTP 410doy WTLIsQUL TB ST STUT

axodsy PITITSSETOUN

*syex €6 feataey ‘suyyr touwt d SOT €967 Trady
*SHOTEIVINOTYD OTWVNAGONAAH NI HIDNRMIS TYINIIVA

JO NOTSATONT HEY *ST-£9-¥AL-OMSIV ‘o 14y
ODTXS| AN ‘oSBT
IV pusTasTy ‘Ioqume) suodmup TvToadg 99104 JITY

UOTIDITTOD YILSY UT
T-9CT 8L TESV LTH

*off 2dy Axepuoosg
£oaag ‘v

Tgop fsSsuop *E UOILY
‘UTEILLIISE JI32TeM

"qey

ToI2IS8Y sSaaInaonIlg
PuB OIASBII-0I3Y
a8pTIqms) f-GoeL

JO *1STT S439SNTOBSSEY]
eon

-(T09)62 Iy 39833UC)H
TO9LLS ISR

‘31L6 298fcxd osgv
18TTQ JO S303II°

- STBTIIYEE TRIN2INILG
UTBILS PUB SS3ILG
1991Q

JO $309339 -~ STBIaN
SOTIEWOUTY

£3TOTAS®TE

Surpzot 3sTlE

51 wornemmxoxdde Uy  CPOSETNILICT ATIIC30BISILES

T9OQ 20T SBY GOTUM ‘IRSWSBSIL O TNERADSTILYD

TIRZ B sal7ubax GaZUals TETINLEE JC TOTSUTINT

*gr8usggs TBTISgEr JO 209335 9Ys SUuTpniou:

fSTP0T 2ATSTAGNT A3TSURITT GSTH 0% 39710 ITITS

o esuedsax sha THTQIIOSSD Io7 LIOSTI B JO 1Tom
~doTaaap oyu2 Jurssnostp 2I0dey WLILSLT =B ST STHL

axcdey POTITSSITOUN

*szax ¢ ‘sorqea ‘suryT Towtr 4 LoT  +I2éT TIady
*SOIIVINOTYO OTHWAIOONCRE 5T EIDUENIS TVINEIVH

O JOTSOIDNT ¥HIL .Nd-mw..mam.uu&mmd BRI 4
0DTXY M3 ‘osIC
Iy TUBTAXTY ‘axajua) suodeoM TeTosdg 900 ITY

TCT309TT00 VIISY T
T-90T ¥ T¥SV ITH
~opy 39y Lxwpuoodsg

Loas3 °E

ayop fsaudp ‘E UOFIY
fOCEnIISE IS2TeM
sae]

TIXBasay SaInongisg

PHT OTISBLZ-0IaY
s¥pTagws) ¢ 7osg

JO "ISTT S232SUGOBSSHYY
TOoK

-(T23)62 AV 39BI3U0Y
TO9LLS SSBE

‘zLLS 203loxg osdv
25%14 IO 5199139

- 3TRTIeTET TRIMIONILS
TT2ILS PUB S59I3G
33ETa

30 $303779 -- STEM
SOTREHaUTYH

£32T0Tas8 TR

FaTpeoT 18%IE

fretrmai0od LBisus ureras oTdoaquasT wB §INOITL

SUTBI1S OTISEBTD 07 PIeTdX 9I¢ Sassalgs ‘Lrosun

1TeINSaI 29Ul UL °po30sTdeu ST MOTI 9Taswrd
07 aup uotjonpold Adorjus YOTUM UT POISPISUOD

sT woTyewrxoxddes wy ¢pIrBTNEIOF ATTIOLOBISTLBS

Ta9q 20U §BY UOTHM ‘qUamyeall OTWeulpomIsus

TTnF e sexrtbax TiPusiys TETIeEN Jo TWOTSMTOUT

‘ga8uaxas TRIIS)™W JO 309FF9 oyz Surpngour

fspBoT eatTsTdmT L£3TSUILUT UBTH 0% SITDOQ PTIOS
3o asuodsax aul SUTGTINSIp I0F AI09Uy3 8 JO AUSm
-doTessp oug Surssnostp qI0dey WEILSAUT UB ST STUL

3x0day POTITSSBTIUN

*syex £¢ fsorqe:r ‘InTTT TouT *d GOT E96T TTAdY
*QHOTIVINOTYD OTHYNACONQRH NI BIDNWYIS TYIHEIWH

J0 NOTISATONT HT *TT-£9-HCI-OMSIV "oy 1dy
OOTXY M5l ‘I5TE
IY paapaity ‘xstus) suodesy Tetoadg 20I08 ITV

TOTYO9TTOD VIISY Ul
T-90T ¥ THSY IIH
*of 29y Axepuodsg

£azad *E

TGoe fSamop ‘U WoIXy
(GUEILIISE X92T8M
as

TOIBaSSY S3INQONILG

PuB OTISETI~-OISY
afpTaquey U9y

JO *ASUI S9A9SNGOBSSEN
sy

-(TC9)62 Iy 30R-IZUOD
TOQLLSG HSBL

fglLG 2oafoxg 0g8dy
1SeTq JO SI09II9

~ ST8TI328W TRINTONILG
TIBILS PUB SS3I25
15%q

JO 8309773 ~- STEIAW
SOTIESUTH

KLatoTase®

FuTPeOT *5VTE

.
[TaSys)

~ W oS F

.

‘reTITRced L31ous uTwrIas oTdoIyTasST TB TIFTNOIG:

STUTBIAS OTLET[S 0% POIBISX 9I8 sSassalas ‘ilosys
T

ATBS OIS 9ULA G "Ppo19aTddT| 5T MoTT o1assri
o4 anp watzonpoxd £doInTs [OTTA TT POISTISHCD

sT worgswtxoxdds wy polwTIIIol ATTIOOBISTABS

Tesq 20T ST UOTUM ‘QUSWIESI] OTHER{DOWIIG:

I 8 sooTnbox giPusxls TRTIOAWE JO TOISTTOTT
F T F FCES

+11R15I35 TRTI928W IO 2WDIFIS 9T IWTTRTOTT

fspect saTsTnAWT A37SWI3TT =TT <2 S9TICQ TTTOS

0 93=odssd Sva FWTQTIOSIT JOI AITITI B IT LTsT
-Jo{aas0 9us 2orssnostp aXod¥sy TTINSTI T 3T sTUD

1z0d9 DITITSSVLONS

*syax €5 fsarqey ‘suyTT TOWT % ST tTIET TS
*SUCITVINITYY OTTARCONCAE U EIDIEMIS TYINETYY

S0 IOISNICNT HEEI .Nﬂnmmnmﬂlukm,md. eor iy
soTMs; xa ‘ez
LY peetaaTy ‘xetus) suwodwep TeToalg Ioacd Iy




O

*SPOY3IW UWOTHNTOS TPUOTSTSUTp-o4s Jo susmdorasap
axnbax 3ng ‘a1qe)Ins aJow aq L¥mM SUOTLRINSTI
-UOd ISY30  ‘WOTRoung PretL 9y3 SUTUTHILLSD JO
SUBaW IATITSUIS ® 9pTaoxd j0u op s3T3T3UELD atqe
-angwem L13usssxd 9Byl $998OTpUT SUOTIOUNT PTOTk
JO £29TIBA B YITM ENUTMTE JOF B18p UoTqededoxd
oavm auwTd TwyumemTIadxs Jo stsdTeuy *JurSernoo
~0a £x34 318 Arosyun LQTOTLSBTS I9pI0 PUODIS

£q a8qq L*2 o3 xaddoo oy eywp £3TITTATSSaxdmoo
oTwEaAp JOo sTsSA{BU®R UB JO S3TNSSY *UOTITOUOD
PIoTL ® £q DPOYTUT 1B SUTBILY OTIIV2 SUI Pus

O

*SPOY3s UOTINTOS TBUOLSUSWTP-O0A% JO JuamdoTassp
sxtbax qanq ferqerns 8Iom o9q L£¥U SUOTIRMBTY
~WOD ISWY) UOTFOUNE PTITL Uy FUTUTMILLLD JO
STUBSE 2AT3TISUSS ® opTaoad qou op saTyracand atgm
~Inseaw ATqussaxd 9BUY S94BOTPUT STWOTIOWNY PToThk
JO 439TTeA B UITA WNUTEMTE I0J ¥3BD uwoiyededoxd
aavs suwTd TeqmowTIadXs JO STSATETY °Juidsmceo
~us £I9A aI8 AIC3] AQTOTASWTS ISTIO PUOLIS

Lq xeq J*z 03 xaddod JoF wywD LaTTTarssaidmono
OTIRULp JO STISATBUB UB JO SITNSSY  “UOTAFDUOD
PTaTA ¥ £q DPIRTEIT 918 SUTRIFS ITASE®[S U3 pPuv

O

*SPOYLISW UOTINTOS THUOISUSEIP-OMZ JO qusmdoTsadp
2atnbag qng ‘sTqELTNS SIOW 3¢ ASm SUOTIBIMITT
-0 X9UjQ °UOTJOmWMY DPIOTA oU3 SUTUTWIILSD JO
SUBIW SATITIUSY B opraoxd qou op seraTrUTb aTqw
-angesu AT3U9sald 94BUY S91BOTRAUT SUOTIOUNT PTITA
Jo £29TI8A B UM WNUTEMTE I0I BRep uotrededoxd
samu susTd Teluswrradxs JO sTSATEUy  *FuUTIBINOD
-ts A19a sav L1094y ALTOTISVTD JI9PIO PUOILS

Aq aeqy Lz 07 xaddoo xoF w1wp L£3TTTATrsSsexdmod
oTmeulp JO 3SISATBUB U@ JO SATNS3Y °“UOTFTPUOD
DPTOTA ¥ £Q POJTWIT 943 SUTBI}S OTISTVIS U3 puv

O

*SPOYISW UOTSUTOS TUUOTIUSWIP-0AZ JO JEIEOTIASD
satnbal 4ng ‘oTqwiThS II0UW 3G AWE STGOTIRINITI
~U0D 19430 "HOTRoUNE PTSTA 9Us PUTUIRILYSD O
Suwsl 94T3TSUSS ® opTaoxd 0T OpP SI9TATIWEND 9TqQB
-~angsa L13usssxd 993 S91BOTYET SUOTLOUNG praLd
Io £15TImA B UITH GNUTENTE JOF #3wp worjeSedoxd
sars susTd TezusmrIadxs O SISATVUY SuiSeimoo
-9 Lis4a 278 Liosys A3TOTASEIS I9PSC TAOOSS

oTuwudp IO SISLTIT® TB JO SLTNSSY  TOTRIIPUOD
pIotd B £q DOLTHETT 5I8 SUTRIYS OTISWIS 203 DGR




